订阅
纠错
加入自媒体

程序员福音,微软最新AI检测代码漏洞准确率高达99%

根据数据管理公司Coralogix的数据,程序员在每1000行代码中就会产生70个bug,每个bug解决方案需要的时间是最初编写代码时的30倍。该公司估计,美国每年在识别和修复漏洞的花费就高达1130亿美元。

好消息是,微软最近宣布,它已经成功地创建了一个机器学习模型,能够在97%的时间内准确识别高优先级安全漏洞。

在本月早些时候发布在网上的一份报告中,微软高级安全程序经理斯科特·克里斯汀森(Scott Christiansen)说,“我们发现,通过将机器学习模型与安全专家配对,我们可以显著改善安全漏洞的识别和分类。”

该模型具有更高的成功率(99%),可以区分安全性和非安全性bug。

微软使用了两种统计技术来设计漏洞检测系统。一种是术语频率逆文档频率算法(TF-IDF),它检查大量文档集合中的关键字并计算它们的相关性。另一种是逻辑回归模型,它确定特定类或事件存在的概率。

该程序首先将安全性和非安全性bug进行了分类,然后进行了改进,将威胁级别划分为“关键”、“重要”或“低影响”。

克里斯蒂安森说,微软的目标是设计一个“精确度尽可能接近安全专家水平”的漏洞检测系统。

该项目的一个关键突破,克里斯蒂安森解释说,是“错误报告可以执行,即使只有标题是可用的训练和得分。”

克里斯蒂安森说:“据我们所知,这是世界上首次成功率达99%。”微软最终将在GitHub上开放它的发现。

声明: 本网站所刊载信息,不代表OFweek观点。刊用本站稿件,务经书面授权。未经授权禁止转载、摘编、复制、翻译及建立镜像,违者将依法追究法律责任。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    人工智能 猎头职位 更多
    扫码关注公众号
    OFweek人工智能网
    获取更多精彩内容
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号