订阅
纠错
加入自媒体

英特尔AI战略全面解读

瞄准“数据”,从点线面勾画AI全栈解决方案

早在60多年前,AI就诞生了。但发展之路,蜿蜒曲折。之所以现在井喷式增长,除了不断提升的计算力,还有一个重要基础,数据。

追溯到今年3月,英特尔发布“数据战略”,对公司进行重新定义,CEO科再奇明确指出,“如果一个市场不能生成数据、分析数据、或使用数据来提供增值服务,英特尔就不会进入。”

再来看一组数字,到2020年,每台自动驾驶汽车每天将生成超过4TB流量,结合所有产业,英特尔给出一项统计,2020年中国数据总量将达到8000EB。当然,不仅是数据量的增长,未来数据的形态正在从结构化(文本图形)向非结构化(音频、视频、社交),以及不规则维度和定制类型数据演进(声纳、GPS、雷达、镭射激光、人工智能、神经网络、基因),数据的处理方式也延伸至端到端。

在这种“数据洪流”效应下,如何将不同形态的数据转化为“增值服务”,处理海量数据,并寻找到关键数据,做快速的预测、诊断,预防灾难事件发生,甚至模拟人的大脑,英特尔认为这就是AI潜力所在。

但这位“CPU霸主”也表示,随着高度动态和非结构化数据的自然数据收集分析需求越来越大,未来计算需求必定将远远超越传统的CPU和GPU架构。那怎么办?英特尔这么说,那就肯定有办法。面对AI后时代的未知,英特尔同样希望用“计算多元”思路来处理,即利用不同特性硬件平台以及软硬件协同优化,来提升数据处理的速度和准确性。

于是,英特尔很快采取了一系列行动。从2015年开始,疯狂布局AI,收购Altera 、Saffron、Yogitech、Itseez、Movidius、Mobileye等一系列各有所长的AI初创公司。当然,一下子收购这么多公司,还是难以消化的。英特尔需要将所有这些融合重组在一起。如何整合?

当英特尔收购Nervana时,它认为这家小公司是其进军AI的“基础”。为此,还成立了由Nervana前任CEO兼联合创始Naveen Rao领导的人工智能产品事业部(AIPG)以及一个进行高级研究和开发的人工智能实验室。

相较于整体AI战略,英特尔也更为强调其AI硬件组合。在本次AI Day上,英特尔刚宣布将在今年年底之前发布Nervana神经网络处理器(简称NNP),即此前代号为“Lake Crest”的项目。Naveen Rao将NNP描述为“一套面向深度学习的专用架构”。

英特尔在AI芯片方面还储备有其它杀手锏,具体包括至强家族、FPGA(来自Altera)、Mobileye(车载平台)以及Movidius(用于边缘位置机器学习)。

英特尔AI战略全面解读

▲英特尔人工智能全栈解决方案

完整的硬件平台,涵盖至强处理器、至强融核处理器、英特尔Nervana神经网络处理器和 FPGA、网络以及存储技术等;

针对深度学习/机器学习而优化的基于英特尔架构的数学函数库(英特尔 MKL-DNN以及数据分析加速库(英特尔 DAAL)等,以及英特尔Nervana Graph;

支持和优化开源深度学习框架如 Spark、Caffe、Theano 以及Neon等;

构建了包括英特尔Nervana、英特尔计算机视觉 SDK、 Movidius 和 Saffron 为代表的平台,以推动前后端协同人工智能发展。

原来,在“看似摸不着头脑”收购狂潮背后,英特尔实则是在补齐各方面的能力。应对数据多样性,现在,英特尔终于缓了口气,拿出一整套AI全栈解决方案。

<上一页  1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    人工智能 猎头职位 更多
    扫码关注公众号
    OFweek人工智能网
    获取更多精彩内容
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号