订阅
纠错
加入自媒体

人工智能之深度学习(DL)

2018-05-04 13:55
AI优化生活
关注

深度学习的训练过程

1)自下上升非监督学习,从底层开始,一层一层的往顶层训练。采用无标定数据(有标定数据也可)分层训练各层参数,这是一个无监督训练过程,是和传统神经网络区别最大的部分,这个过程可以看作是feature learning过程。

人工智能之深度学习(DL)

2)自顶向下的监督学习,通过带标签的数据去训练,误差自顶向下传输,对网络进行微调。基于第一步得到的各层参数进一步fine-tune整个多层模型的参数,这一个有监督训练过程。

人工智能之深度学习(DL)

深度学习的第一步不是随机初始化,而是通过学习输入数据的结构得到的,因而这个初值更接近全局最优,从而能够取得更好的效果。所以深度学习效果好很大程度上归功于第一步的feature learning过程。

对深度学习而言,训练集就是用来求解神经网络的权重的,最后形成模型;而测试集,就是用来验证模型的准确度的。

深度学习领域研究包含:优化(Optimization),泛化(Generalization),表达(Representation)以及应用(Applications)。除了应用(Applications)之外每个部分又可以分成实践和理论两个方面。

根据解决问题、应用领域等不同,深度学习有许多不同实现形式:卷积神经网络(ConvolutionalNeural Networks)、深度置信网络(DeepBelief Networks)、受限玻尔兹曼机(RestrictedBoltzmann Machines)、深度玻尔兹曼机(Deep BoltzmannMachines)、递归自动编码器(RecursiveAutoencoders)、深度表达(DeepRepresentation)等。

深度学习的优点:深度学习提出了一种让计算机自动学习出模式特征的方法,并将特征学习融入到了建立模型的过程中,从而减少了人为设计特征造成的不完备性。而目前以深度学习为核心的某些机器学习应用,在满足特定条件的应用场景下,已经达到了超越现有算法的识别或分类性能。

深度学习的缺点:只能提供有限数据量的应用场景下,深度学习算法不能够对数据的规律进行无偏差的估计。为了达到很好的精度,需要大数据支撑。由于深度学习中图模型的复杂化导致算法的时间复杂度急剧提升,为了保证算法的实时性,需要更高的并行编程技巧和更多更好的硬件支持。因此,只有一些经济实力比较强大的科研机构或企业,才能够用深度学习来做一些前沿而实用的应用。

深度学习成功应用于计算机视觉、语音识别、记忆网络、自然语言处理等其他领域。

人工智能之深度学习(DL)

深度学习是关于自动学习需要建模的数据潜在分布的多层表达的复杂算法。深度学习算法自动的提取分类需要的低层次或者高层次特征。总之,深度学习是用多层次的分析和计算手段,得到结果的一种方法。

结语

目前深度学习的发展引起其他它领域的革命。深度学习的火热得益于各行各业丰富的大数据发展和计算机计算能力的提升,同时也要归功于过去经验。今后深度学习将继续解决各种识别(Recognition)和演绎(Ability to Act)方面的相关问题。当然,机器学习本身也不是完美的,也不是解决世间任何机器学习问题的利器,深度学习目前仍有大量工作需要研究,不应该被放大到一个无所不能的程度。

<上一页  1  2  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    人工智能 猎头职位 更多
    扫码关注公众号
    OFweek人工智能网
    获取更多精彩内容
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号