订阅
纠错
加入自媒体

ZLG深度解析—人脸识别核心技术

2019-01-07 14:31
ZLG致远电子
关注

二、人脸定位

面部特征点定位在人脸识别、表情识别、人脸动画等人脸分析任务中至关重要的一环。人脸定位算法需要选取若干个面部特征点,点越多越精细,但同时计算量也越大。兼顾精确度和效率,我们选用双眼中心点、鼻尖及嘴角五个特征点。经测试,它们在表情、姿态、肤色等差异上均表现出很好的鲁棒性。

人脸定位接口程序如下所示,需要先加载预先训练好的模型,再进行定位检测:

人脸定位程序的效果如下所示:

本算法在AFLW数据集上的定位误差及与其他算法的对比情况:

三、人脸校准

本步骤目的是摆正人脸,将人脸置于图像中央,减小后续比对模型的计算压力,提升比对的精度。主要利用人脸定位获得的5个特征点(人脸的双眼、鼻尖及嘴角)获取仿射变换矩阵,通过仿射变换实现人脸的摆正。

目标图形以(x,y)为轴心顺时针旋转Θ弧度,变换矩阵为:

人脸校准C++代码可参考如下所示:

一般此步骤不建议使用外部库做变换,所以这里提供仿射变换python源码以供参考:

人脸校准的效果如图所示:

四、人脸对比

人脸比对和人脸身份认证的前提是需要提取人脸独有的特征点信息。在人脸校准之后可以利用深度神经网络,将输入的人脸进行特征提取。如将112×112×3的脸部图像提取256个浮点数据特征信息,并将其作为人脸的唯一标识。在注册阶段把256个浮点数据输入系统,而认证阶段则提取系统存储的数据与当前图像新生成的256个浮点数据进行比对最终得到人脸比对结果。

人脸比对流程的示意图如下所示:

通过神经网络算法得到的特征点示意图如下:

而人脸比对则是对256个浮点数据之间进行距离运算。计算方式常用的有两种,一种是欧式距离,一种是余弦距离。x,y向量欧式距离定义如下:

x,y向量之间余弦距离定义如下:

余弦距离或欧式距离越大,则两个特征值相似度越低,属于同一个人的可能性越小。如下图,他们的脸部差异值为0.4296 大于上文所说的该模型最佳阈值0.36,此时判断两人为不同的人,可见结果是正确的。

把归一化为-1到1的图像数据、特征点提取模型的参数还有人脸数据库输入到人脸比对的函数接口face_recgnition,即可得人脸认证结果。程序接口的简单调用方式如下所示:

人脸比对算法的准确率方面是以查准率为保证的,AUC (Area under curve)=0.998,ROC曲线图如下所示:

我们设计的比对模型主要特点是模型参数少、计算量少并能保证高的准确率,一定程度上适合在嵌入端进行布置。对比其他人脸比对模型差异如下表格所示:

far@1e-3表示将反例判定为正例的概率控制在千分之一以下时,模型仍能保持的准确率;

dlib在实际测试中,存在detector检测不出人脸的情况,导致最终效果与官网上有一定差异;

resnet-18为pytorch的playground标准模型;

lfw/agedb_30/cfp_ff为标准人脸比对测试库,测试过程中图片已经过人脸居中处理。

<上一页  1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    人工智能 猎头职位 更多
    扫码关注公众号
    OFweek人工智能网
    获取更多精彩内容
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号