机器学习和人工智能的2019年行业发展趋势
多年来,人们一直生活在分布式数据孤岛中,这种趋势没有任何放缓的迹象。Qlik公司高级主管Dan Sommer预测,“在2019年,人们将更好地准备处理所有分散数据的分布式工作负载。如今,最大的未被证实的大趋势之一是Kubernetes的崛起。总之,这些技术采用了过去单一的技术并将其分散,从根本上实现了扩展工作负载和第三波授权的新方法。就像在扩展硬件和扩展基础设施之前一样,扩展工作负载将对刺激创新产生巨大的影响。 在2019年,行业领先组织的大多数企业架构师将微服务和容器编排视为商业智能和分析平台的关键架构组件。”
GoodData公司首席执行官Roman Stanek预测,企业要为过去使用的一些数据平台做好退出准备。
Stanek 说,“现代企业将继续淘汰像Hadoop这样的技术。 Hortonworks和Cloudera的合并首次展示了2019年Hadoop的预计价值。数据仍然需要管理工具,但随着人工智能和机器学习的兴起,其复杂性将被消除。”
Domino数据实验室的首席数据科学家Josh Poduska预测,“人工智能将在2019年从炒作转变为商业影响,人工智能的蜜月正式结束。2019年将是人工智能成为组织现实的一年,而不是实验、修补和怀疑。”
MathWorks公司的Seth DeLand预测,机器学习将以更大的优势整合到产品和服务中。
他指出,“机器学习已经出现在一些领域:用于面部识别的图像处理和计算机视觉、能源生产的价格和负荷预测、工业设备故障预测等。在未来的一年里,随着越来越多的公司受到启发,通过使用可扩展的软件工具(包括MATLAB)将机器学习算法集成到他们的产品和服务中,可以预期机器学习将越来越多。”
SAS公司产品管理主管Ron Agresta说,组织必须在两种数据力量之间取得适当的平衡,包括“攻击性”数据能力(即利用数据洞察力提高利润)和“防御性”数据能力(如治理和安全)。如今已经出现了一些混乱,因此预计2019年将实现防御再平衡。”
他表示,“对数据收集和使用的额外审查使许多企业处于防御状态。许多公司几乎完全依赖于用户放弃的货币化数据,但在这一领域,监管方面的关注正在增加。预计将出台更多的消费者数据保护法律,并对技术进行相应的更改。”
调研机构Forrester公司预测,首席信息官们将在2019年成为热门人物。该公司指出:“如果首席信息官不能履行职责,那么业务关系就会破裂,首席执行官会找其他人来领导技术议程。然而,那些获得成功的首席信息官将在其现有组织中提升到更具影响力的企业管理者,或转向下一个IT挑战。”
自从大数据革命开始以来,复杂性一直困扰着潜在的数据科学从业者,Hadoop生态系统就是一个典型的例子。这就是为什么Clarity Insights公司首席技术官Tripp Smith表示企业在2019年将接受简单化的原因。
他指出,“如今,企业比以往任何时候都更加牺牲性能或成本优化以增加简单性。十年前,我们都试图减少或消除企业内部IT的需求。如今,组织需要数据驱动,因此如何分析和消化数据也需要简单化。这意味着采用云计算。为云计算基础设施支付更多费用是值得的,从而节省寻找优质工程资源的更高成本。”
ATOS公司北美区副总裁windy garrett预测,人工智能的出现已经影响了劳动力的工作岗位,这种趋势将在2019年持续。
他表示,“人工智能将在2019年及以后明确需求,而对于劳动力数量将不断增长,以满足这一特定需求。2019年,工业界将大幅增加人工智能项目,以及企业重新培训和提升其现有员工队伍,以保持竞争市场的相关性。”
最新活动更多
-
12月12日火热报名中>>> STM32全球线上峰会
-
即日-12.18立即报名>>> 【在线会议】Automation1微纳精密运动控制系统
-
12月19日立即报名>> 【线下会议】OFweek 2024(第九届)物联网产业大会
-
即日-12.26立即报名>>> 【在线会议】村田用于AR/VR设计开发解决方案
-
1月8日火热报名中>> Allegro助力汽车电气化和底盘解决方案优化在线研讨会
-
即日-1.14火热报名中>> OFweek2025中国智造CIO在线峰会
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论