AI如何设计才能人类利益最大化?
曾为现代互联网早期协议和架构设计做出贡献的Vint Cerf,用一个寓言来解释为什么在人工智能等新兴技术出现后,勇敢的领导力至关重要。
想象一下,你住在一个被群山环绕的山谷底部的小社区里。在远处的山顶上有一块巨石,它已经存在了很长时间,从未移动过,所以就你的社区而言,它只是景观的一部分。然后有一天,你会注意到那块巨石看起来不稳定,如果它滚下山,会摧毁你的社区和里面的每个人。事实上,你也许意识到,也许你一生都忽视了它的移动。那块巨石一直在一点一点地移动,但是你从来没有仔细观察每天发生的细微变化,比如它投下的阴影发生了微小的变化,它和下一座山之间的视觉距离,以及它与地面摩擦发出的几乎察觉不到的声音。你意识到,自己一个人无法独自跑上山去阻止巨石的移动,你太渺小了,而巨石又太大了。
但是随后你意识到,如果能找到一颗鹅卵石,并把它放在正确的位置,它会减缓巨石的动量,稍微扭转移动的趋势。但仅仅一颗鹅卵石无法阻止巨石摧毁村庄,所以你要求整个社区加入你的行列。每个人手中都拿着鹅卵石,爬上了这座山,并为此做好了准备。显然,是人和鹅卵石产生了所有的作用,而并不是那块巨石。
安全有益的技术不是希望和偶然的结果,它是勇敢的领导力和专注持续合作的产物。但是目前,人工智能社区充满着各种目的的竞争。
人工智能的未来——也就是人类的未来——已经被九大科技巨头所控制。这些科技巨头正在开发框架、芯片组和网络,资助了大部分研究,获得了大部分专利,并且在这个过程中以不透明或不可见的方式挖掘着我们的数据。其中六家科技巨头在美国,我称他们为G-MAFIA:谷歌、微软、亚马逊、Facebook、IBM和苹果。剩下三家在中国,也就是BAT:百度、阿里巴巴和腾讯。
为了满足短视的期望,这九大科技巨头分别面临着来自美国华尔街和中国北京的巨大压力,即使我们可能会为未来付出巨大的代价。我们必须授权并鼓励九大巨头改变人工智能的发展轨迹,因为如果没有我们的大力支持,他们不能也不会自己去做。
接下来要做的就是一系列鹅卵石,它们可以让人类走上通往未来的更好道路。
九大巨头的领导者都承诺,他们正在开发和推广人工智能,以造福人类。我相信这是他们的本意,但是履行这一承诺是非常困难的。首先,我们应该如何定义“造福”?这个词到底是什么意思?这又回到了人工智能社区内部的问题。我们无法让所有人都同意“造福”,因为这个宽泛的说法实在太模糊了,无法引导人工智能社区。
例如,受西方道德哲学家Immanuel Kant启发的人工智能社区,学习如何将权利与义务系统预先编程到某些人工智能系统中。杀人是不好的,救人是好的。如果人工智能控制着汽车,并且它唯一的选择是撞上一棵树并伤害司机,或者撞上一群人并杀死他们,那么这种逻辑就会存在问题。僵硬的解释不能解决更复杂的现实环境,因为在现实环境中,选择可能会更加多样:撞上一棵树并杀死司机;撞上人群并杀死八个人;撞到人行道上,只杀死了一个三岁的男孩。在这些例子中,我们如何定义“好”的最佳版本?
同样,框架对九大巨头来说也很有用。他们不需要精通哲学,他们只是要求一种更慢、更认真的方法。九大巨头应该采取具体措施来收集、培训和使用我们的数据,雇佣员工,以及在工作场所传达道德行为。
在这个过程的每一步,九大巨头都应该分析自己的行为,并确定他们是否正在造成未来的伤害,他们也应该能够验证自己的选择是否是正确的。这样的要求需要有关于偏见和透明度的明确标准。
然而现在,并没有单一的基线或标准来评估偏见,也没有人在寻求克服目前人工智能中存在的偏见。以我自己在中国的经历,这种没有把安全放在速度之上的机制,会产生令人担心的后果。
此外,透明度也没有标准。在美国,G-MAFIA和美国公民自由联盟、新美国基金会以及哈佛大学伯克曼·克莱因中心都在人工智能上进行了合作,旨在提高人工智能研究的透明度。这些合作伙伴发布了一系列非常棒的建议,帮助引导人工智能研究朝着积极的方向发展,但是这些原则并不能以任何方式实施,而且在G-MAFIA的所有业务部门中也没有被遵守。BAT也同样如此。
九大巨头正在使用充满偏见的有缺陷的语料库训练数据集。这是众所周知的事实,而改进数据和学习模式又是一项巨大的财务负担。比如ImageNet,一个有严重问题的语料库。ImageNet包含1400万张标记图像,其中大约一半的标记数据来自美国。
在美国,新娘的“传统”形象是穿着白色连衣裙和面纱的女人,尽管在现实中,这种形象并不能代表大多数人的婚礼。有些女人会选择穿着长裤结婚,有些则穿着色彩鲜艳的夏装在沙滩上结婚,有些穿着和服或纱丽结婚。然而,除了白色的裙子和面纱之外,ImageNet无法识别出其他新娘。
我们也知道医疗数据集存在问题。接受识别癌症训练的系统主要采用的是浅色皮肤的摄取照片和扫描。在未来,它可能会导致黑褐色皮肤的人被误诊。如果九大巨头知道语料库中存在问题,却没有采取任何措施,那么他们将把人工智能引向错误的道路。
最新活动更多
-
12月12日火热报名中>>> STM32全球线上峰会
-
即日-12.18立即报名>>> 【在线会议】Automation1微纳精密运动控制系统
-
12月19日立即报名>> 【线下会议】OFweek 2024(第九届)物联网产业大会
-
即日-12.26立即报名>>> 【在线会议】村田用于AR/VR设计开发解决方案
-
1月8日火热报名中>> Allegro助力汽车电气化和底盘解决方案优化在线研讨会
-
即日-1.14火热报名中>> OFweek2025中国智造CIO在线峰会
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论