病理市场能否成为AI初创企业新出口?
场景:病理诊断
诊断是人工智能在病理领域的一个直观的应用。在常人的刻板印象中,医生的职责是为了给予患者诊断建议,而人工智能则是为了替代医生。
这种印象显然存在逻辑问题,但作为一种数据处理手段,经过恰当训练的AI的确可以全方位地审视病理数据信息,以辅助医生做出判断。
事实上,国内从事影像数据的分析的AI企业占据了“AI+病理”的半壁江山,动脉网记者采访了部分国内外从事病理影像诊断的企业,并将其特点总结如下。
1、透彻影像
成立于2017年的透彻影像是一家专注于病理的人工智能企业,其产品瞄准于肺、胃、肠、淋巴结、前列腺和乳腺六个病理场景。
透彻影像CTO王书浩认为:“场景的选择是出于市场考虑,这仍是一片蓝海市场,我们希望能在开端惠及更多的患者,胃癌便是如此。”
中国每年大概有2000万名患者拥有活检的需求,其中大部分的需求次数为两次及其以上。如此大量的筛查,国内的病理科资源实在难以胜任。同时,在胃、肠方向,医生的重复劳动率非常高。很多时候患者可能仅仅是患有肠炎,但仍进行以肠癌为目标导向的治疗,这种情况导致了很多无谓的活检,而人工智能技术可以快速的甄别这一问题。
基于解放军总医院2017年胃部病理切片测试报告,透彻影像AI对于胃部恶性肿瘤识别的敏感性现已达到100%,特异性也达到了90%。在现有状态下,该筛查准确率已经达到了一个相当高的标准。
而后,该公司将着手对筛查出的癌症进行准确划分,确认胃癌的每一个分型,以给出更加精准的诊断建议。
2、深思考
深思考人工智能(iDeepwise.ai)自成立以来,为全国各地30多家知名三甲医院及检验机构提供宫颈癌筛查服务。至今为止,深思考已经完成了近10万例宫颈玻片的回顾性分析研究。
在研究过程中,其TCT辅助筛查产品癌前病变的敏感性从人工阅片的65%提升至接近100%,阴性预测值提升至80%左右,可有效降低阅片医生8成阅片工作量。
其CEO杨志明谈到:“我们在宫颈细胞公开数据集Helerv,采用MS-CNN深度学习细胞分类算法,相同评测条件下,各项指标超越美国国立卫生研究院NIH分类结果(敏感性超过NIH的结果1-1.5%),达到该数据集上全世界最优的结果。”
在未来商业化方面,深思考可根据已有的TCT辅助筛查收费目录进行收费。根据国家发布最新医疗价格项目规定,宫颈细胞学计算机辅助诊断价格为100元/次-160元/次,按照目前全国每年进行宫颈癌筛查的妇女约为1.1亿人次计算,预计未来平均每年将可产生100亿-200亿人民币的经济效益。
3、迪英加
相对于其他的病理企业,迪英加的“AI+病理”产品可谓面面俱到,以覆盖尽可能多的癌症患者。
迪英加创始人杨林告诉动脉网记者:“中国每年新增的癌症患者近500万人,而每年做细胞筛查的量级近一个亿,这是一个非常大的数量。而我们的产品覆盖了所有的病理科室会用到的各个大类,以及所有类型中至少50%以上的各种病变,其广度可达世界首位。”
在产品设计上,迪英加以D-Path AI人工智能病理辅助诊断系统为核心,在细胞病理方向开发了20余个智能分析模块,可协助诊断胃癌、肺癌、膀胱癌、乳腺癌、肾癌、前列腺癌等癌症分型。
在分子病理方面,迪英加能运用人工智能对探头液样品、血细胞以及像宫颈切片等进行判读。
如今,迪英加已经运用AI读取了近百万例宫颈切片,其他类别的病理也趁迅速上升趋势。并在前不久举办的人工智能卓医挑战赛获得细胞病理(宫颈涂片),组织病理(甲状腺冰冻)和免疫组化定量分析的三项技术冠军。
迪英加的产品源自于迪英加创始人和迪英加研究院在AI-数字病理领域发表的100多篇SCI文章,其中《Pathologist-level Interpretable Whole-slide Cancer Diagnosis with Deep Learning》被Nature Medicine (影响因子30)所收录。
在商业化方面,迪英加将采取模块化销售的方式,即医院病理科可选择最适合自己的模块进行购买,并可在未来进行模块扩充。
4、Lunit
来自韩国的人工智能企业Lunit为乳腺癌研发了一整套的人工智能产品,其胸部X光摄影和乳房X光摄影用于疾病最初检测与筛查,让他乳腺组织病理切片评级是医学最终诊断结果的关键步骤。
尽管病理学评级在诊断过程中起着很重要的作用,但该领域还是缺乏可量化的客观标准和详细的解释过程,数字病理学的出现为解决该问题带来了希望。
Lunit在数字病理学研究上花费了不少财力和人力,为的是客观地解释组织样本中不同的形态学特征,并在提高组织病理学诊断的准确性、高效性和一致性上进行创新。
2017年,Lunit引入了一种人工智能算法,可以实现对淋巴结中乳腺癌转移的自动检测和阶段评估,这是人类第一次尝试将特定的病理学任务从头到尾自动化。
对区域性淋巴结的病理诊断(pN-stage:也就是判断乳腺癌是否已经扩散到淋巴结)这一诊断过程需要进行检查的图片数据量非常大,且图片的最高分辨率达到了200,000 × 100,000像素,这需要耗费病理学家大量的时间来对多个图片进行仔细审查,最后正确确定pN-stage。
Lunit运用其深度学习技术,开发出一种高度精确的pN-stage预测算法,该算法将多个淋巴结组织切片的肿瘤转移的检测和分类整合到一个临床结果中,使用来自Camelyon17数据集的淋巴结组织学图像来建立一个预测pN-stage的算法,该算法的性能水平超过了目前世界上大多的领先技术,其有可能显著提高病理学家的效率和诊断准确性。
场景:植入器械的人工智能
既然我们可以设计出深度解析病理影像的软件,那何不直接在影像采集时就对其进行优化呢?
如今,一些传统的器械企业也在尝试将过去死板的仪器智能化,用人工智能赋予其更精细的影像与更迅捷的分析效率。
1、福怡股份
福怡股份是一家深耕病理15年的医疗器械公司,其产品覆盖了病理影像采集、病理数据分析、远程病理诊断等服务,能够为病理科提供智能诊断整体解决方案。
其研制的数字病理智能诊断系统可以完成图像高清数字化转换,最高通量400片,实现了24小时无人值守自动扫描。病理切片高速扫描,无缝拼接,更改传统工作方式,让病理标本数字化,图像化,可存储化,为实现数字化、信息化打下良好基础。
福怡股份的数字病理远程诊断系统平台以AI技术为辅助,已积聚了全国近2000位公立医院在职病理科医生,为“远程病理标准实验室”进行诊断的是各省顶尖病理专家,每个省选取5~10位副高级以上专家,保证诊断结果在区域范围内具有一定权威性,杜绝漏诊,确保诊断结果真实可靠。
2、智影医疗
近日,智影医疗研发的一款 AI 显微镜——基于痰菌显微成像的肺结核自动诊断系统,即将正式投入商用。AI 显微镜应用了人工智能深度学习算法,可在3分钟内快速扫描整个玻片及进行结核杆 菌计数,诊断出肺结核。
传统的痰涂片检测医学图像处理方式是算法依据建立的规则对图像进行处理,规则不能适配所有个体,所以检测的准确率不高,而人工智能的图像处理,是经过了大数据的训练,深度学习开发, 可以大幅度提高检测的准确率。
智影医疗开发的 AI 显微镜融入了人工智能的图像处理和视觉处理技术,提供痰液染色涂片自动 扫描图像并进行智能检测分析,医生轻松输入指令,AI 就能自动识别、检测痰液染色涂片,之后定量计算和生成报告,并将检测结果实时显示到客户端中,及时提醒又不打扰医生工作流程, 能提高医生的诊断效率和准确度。
最新活动更多
-
11月28日立即报名>>> 2024工程师系列—工业电子技术在线会议
-
12月19日立即报名>> 【线下会议】OFweek 2024(第九届)物联网产业大会
-
即日-12.26火热报名中>> OFweek2024中国智造CIO在线峰会
-
即日-2025.8.1立即下载>> 《2024智能制造产业高端化、智能化、绿色化发展蓝皮书》
-
精彩回顾立即查看>> 2024 智能家居出海论坛
-
精彩回顾立即查看>> 【在线会议】多物理场仿真助跑新能源汽车
推荐专题
-
10 中国AI的“六便士”时刻
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论