2019年人工智能对高性能计算的十种影响
7.硬件:,专注于库和框架的交互式功能
人工智能的工作量并不大。这意味着少数库接口和框架支配 “人工智能加速器”需要作为卖点。
交互性是一个长期存在的请求,通常在高性能计算系统中一直处于“次要地位”,被人工智能程序员直接置于前沿和核心。高性能计算这种变化的速度还有待观察,但2019年这一领域的创新将是值得注意的,即使是零散的和有些隐蔽的。交互性也可以称为“个性化”。
高性能计算支持更多的硬件多样性、交互性支持以及针对性能优化的额外库/框架抽象,以支持人工智能工作负载。高性能计算社区对性能的关注将有助于说明基础设施的额外融合将有利于数据中心部署。没有人愿意放弃性能,如果不必这样做,高性能计算社区的专业知识将有助于商品化人工智能/机器学习的性能,从而导致社区之间更多的硬件技术融合。
8.人员融合:用户多样性和对高性能计算的兴趣增加
人工智能将注入许多不同背景的新人才。人工智能将以前所未有的规模给高性能计算带来民主化。在过去的几年中,“高性能计算的民主化”这个短语用于描述高性能计算如何被工程师和科学家群体的访问。数学和物理问题可能推动了早期的超级计算工作量,但最近越来越多的用户发现,在医学、天气预报和风险管理等领域,高性能计算工作量是不可或缺的。
人工智能的用户群体比高性能计算要广泛得多,给高性能计算的民主化带来了全新的维度。如今,高性能计算专家和人工智能专家正在联合起来进行开发。
9.新投资:推理
机器学习通常被认为是由称为“训练”的学习阶段和称为“推理”的实施阶段组成。似乎需要更多的周期来进行推理,而不是进行训练,特别是当人们看到机器学习无处不在地嵌入到周围的解决方案中时。
有了如此巨大的市场机会,让人觉得整个世界都在试图从这一推理市场中获得更大的份额。推理已经在处理器、FPGA、GPU、DSP和大量定制ASIC上实现。功率、延迟和总体成本是关键因素,这些因素为人们提供了一系列具有不同卖点的选项。高性能CPU加上低延迟、易于重新编程和可预测延迟的FPGA似乎是补充当前CPU主导的推导世界的合理选择。时间会证明一切。
人们将发现推理工作负载将对包括高性能计算在内的所有计算产生重大影响。
10.应用程序的融合:不是在“重新思考”之后进行更换
扩展工作负载多样性,并将看到各种工作负载进行融合。那些有远见的人已经证明,当高性能计算机和人工智能结合在一起时,有许多机会。从将系统集成到能够预测极端天气(如飓风)的模式,再到气候或天气预报系统。现在出现了各种想法。生成对抗网络(GAN)是许多人高度重视的一类机器学习系统,生成对抗网络(GAN)无疑将有助于融合高性能计算和人工智能/机器学习工作。
虽然现在很少有应用程序结合高性能计算和人工智能技术,而基于该领域的早期结果,很容易预测这是高性能计算应用程序的未来,并将构成高性能计算因人工智能而面临的最大变化。
理解这十种方式
计算的故事在某种意义上并没有改变:它完全取决于整个系统对用户的作用。虽然需求发生变化,但完整系统由硬件和软件组成的事实并没有改变。很容易被单一技术(硬件或软件)分散注意力,最好的系统会在最有帮助的地方小心地应用新技术。
结论:人工智能将使用高性能计算,并将永远改变
事实上,人工智能可能是高性能计算历史上最大的变革推动者。高性能计算不断发展,因为已经通过自己的工作负载来实现,并且它也将在人工智能中发展。
即人工智能用户只需加入高性能计算社区并在其上加上自己的标记。他们也将使用非高性能计算系统,就像其他高性能计算用户一样。
将有专为人工智能工作负载设计和构建的定制高性能机器,而其他机器的人工智能工作负载也在具有非人工智能工作负载的更通用的高性能设施上运行。平衡机器在需要高性能灵活机器的情况下才能实现加速。人工智能将有助于未来定义什么成为超级计算机,因此可能将会调整高性能计算机的进程。
最新活动更多
-
即日-1.24立即参与>>> 【限时免费】安森美:Treo 平台带来出色的精密模拟
-
2月28日火热报名中>> 【免费试用】东集技术年终福利——免费试用活动
-
即日-3.21立即报名 >> 【深圳 IEAE】2025 消费新场景创新与实践论坛
-
4日10日立即报名>> OFweek 2025(第十四届)中国机器人产业大会
-
7.30-8.1火热报名中>> 全数会2025(第六届)机器人及智能工厂展
-
即日-2025.8.1立即下载>> 《2024智能制造产业高端化、智能化、绿色化发展蓝皮书》
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论