光神经网络,正在照亮智能计算的未来
芯片的结构由不同的层组成,分别在光纳米电路中的不同通道上传输光。
(分子光学神经元电路)
研究人员使用了两种不同的机器学习算法,分别是小规模的监督学习和无监督学习,以光脉冲的形式向后“提供”信息,以此测试全光学神经突触系统能否根据给定的光识别出具体的模式。
目前,研究人员已经利用该技术成功实现了光学模式识别,并展现了光子神经网络的可扩展性。
在此,我们可以简单总结一下这种新光学神经网络硬件的特殊之处:
首先,它解决了前辈们没能解决的问题——光学计算在识别准确率、可编程性、微型化上的缺陷——让光学计算在计算机硬件领域的潜力带来了新的前景。
(正在开发的光学微芯片大约只有一分钱大小)
另外,该硬件的计算方式和大脑中神经元突触的信息传递高度相似,不仅使得信息(数据)得以在人工神经网络中传输,还能够进行有效的处理和存储。以更类似于大脑的方式处理信息,这有助于开发更高性能的算法,进而帮助智能机器更好地完成现实世界的任务。
而且,该系统只在光下工作,使它充分发挥了光学计算的优势,处理数据的速度要快很多倍,更适合用于一些大规模数据的神经网络,比如医学诊断模型等。并且更加节省能耗。
这也就不难理解,为什么有人认为,如果高能效的可扩展光子神经芯片最终出现,这一团队的研究绝对算是开山之作了吧。
当然,想要让可扩展光子神经网络系统在现实中应用,还需要做许多后续工作。
最首要的,就是增加人工神经元和突触的数量,以及神经网络的深度,以便进一步接近和适应真实的大规模计算应用场景。
另外,芯片的制造也存在一定的限制。对此,埃克塞特大学的戴维·赖特教授表示,将使用硅技术来生产光学纳米芯片。
另一个值得关注的问题是,系统中极为关键的相变材料,其结晶速度会吸收并减慢光速,从而限制神经元被激发的最大速率,对于光的交叉耦合带来一定的复杂影响。因此,每一次注入该系统的总光学功率都需要进行仔细校准,以保证材料对输入信号的响应完全符合预期。
不管怎么说,尽管光学计算硬件仍然在实现层面面临着许多挑战和困难,规模化应用也没有明确的时间表。但或多或少让我们看到了更多有趣可行的计算方式,未来世界的算力资源依旧是充沛和值得期待的。
随着智能基建的一步步添砖加瓦,光学计算必将变得越来越重要。
文 | 脑极体
最新活动更多
-
即日-1.24立即参与>>> 【限时免费】安森美:Treo 平台带来出色的精密模拟
-
2月28日火热报名中>> 【免费试用】东集技术年终福利——免费试用活动
-
即日-3.21立即报名 >> 【深圳 IEAE】2025 消费新场景创新与实践论坛
-
4日10日立即报名>> OFweek 2025(第十四届)中国机器人产业大会
-
7.30-8.1火热报名中>> 全数会2025(第六届)机器人及智能工厂展
-
即日-2025.8.1立即下载>> 《2024智能制造产业高端化、智能化、绿色化发展蓝皮书》
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论