订阅
纠错
加入自媒体

2019年如何玩转人工智能?全球AI大牛给你答案

2019-05-16 08:58
来源: 猎云网

Greg Brockman和Ilya Sutskever,OpenAI的联合创始人

游戏一直是人工智能研究的基准,OpenAI一直在创造一种能够比人类更好地玩许多最复杂游戏的人工智能方面处于领先地位。该技术建立在深度强化学习的基础上,可以说是在向通用人工智能迈进的早期阶段,而且这种技术也可以应用于游戏之外。

事实上,他们将讨论NLP和文本生成背后的最新人工智能,这是许多企业正在用他们的客户参与消息应用程序进行的工作。这一切都源于OpenAI在游戏领域的工作所获得的成功,它家的机器人被扔进了迄今为止最大的斗兽场里。4月18日至4月21日,该公司进行了一项大规模实验,以测试它对dota2最佳玩家的表现。

OpenAI 5的胜率为99.4%,没有人能够发现人类编程的游戏机器人所遭受的那种易于执行的攻击。

能够驾驭复杂策略游戏的机器人是一个里程碑,因为它已经开始捕捉现实世界的各个方面。这是向能够处理复杂性和不确定性的人工智能迈出的一步,为开发在最具经济价值的工作上超越人类的自主系统提供了一条更清晰的道路。

Kevin Scott,微软首席技术官

现代机器学习产业不仅建立在计算能力的进步上,也建立在开源项目上。正是这种体系结构使机器智能得以突飞猛进,科技巨头微软正在率先发布旗下新的Azure机器学习和Azure认知服务声明。

微软的业务领域充斥着大量与企业相关的工作,包括机器人和制造公司的人工智能,它还为机器模型训练和推理提供了通用的FPGA芯片。此外,开放式神经网络交换(ONNX)也充分发挥了微软的优势,ONNX允许微软客户使用其他非微软技术,这也预示着一个开放的新时代正在来临。ONNX现在支持Nvidia的Tensorrt和Intel的Ngraph,用于Nvidia和Intel硬件上的高速推理。这是在微软加入MLFlow项目,并在NX运行时上开放源代码的高性能推理引擎之后发生的又一件令人兴奋的事情。

ONNX为不同框架、运行流程、编译器和其他工具的集合带来的互操作性,使机器学习生态系统更大。FPGA芯片多年来一直被用于为Azure运行100%的数据加密和压缩加速任务。现在,用户们可以随意使用TensorFlow、PyTorch、Keras或任何他们喜欢的框架来构建定制模型,然后通过硬件加速任何GPU或FPGA。

根据Github去年秋天发布的2018年10月海外公告来看,微软现在也被称为开源项目贡献者最大的雇主之一,Github是微软去年收购的一家企业。

<上一页  1  2  
声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    人工智能 猎头职位 更多
    扫码关注公众号
    OFweek人工智能网
    获取更多精彩内容
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号