订阅
纠错
加入自媒体

英特尔AI芯片业务的现在与未来发展

2019-06-04 11:02
来源: 亿欧网

Nervana

早在2017年,英特尔首次宣布其正在研发的两款AI加速器芯片:一款用于推断工作负载,另一款用于训练。今年1月份,英特尔在消费电子展(Consumer Electronics Show,简称CES)新闻发布会上进一步详细介绍了这款推断产品。它被称为Nervana神经网络处理器(Nervana Neural Network Processor,即NNP-I),它适用于PCIe插槽(或基于OCP加速器模块规格的夹层板),采用10nm工艺制造,并涵盖了基于英特尔Ice Lake架构处理器的一般性操作,以及神经网络加速。

NNP-I针对图像识别进行了优化,其架构与其他芯片截然不同;它没有标准的缓存层次结构,其处理器内嵌的内存由软件直接管理。Singer表示,由于其高速的芯片内外互连,NNP-I 能够将神经网络参数分散到多个芯片上,从而实现非常高的并行性。此外,它还使用了一种新的数字格式—— Flexpoint,这种格式可以提高推断任务中至关重要的标量计算,让芯片能够适应大型机器学习模型,同时保持“行业领先”的功耗。

Singer表示,“图像可能是最适合加速器的情况,因为很多图像识别功能都是矩阵乘法。“自然语言处理和推荐系统需要更多的混合类型的计算,该CPU核心可以在本地执行大量的张量活动和 CPU 任务,而无需将数据移出芯片。”

NNP-I的量产仍然任重道远,但Singer表示,它已经在英特尔的实验室中运行了多种拓扑结构。他预计今年有望投入生产,支持Facebook的Glow Compiler——这是一款机器学习编译器,旨在加速深度学习框架的性能。

上述代号为“Spring Crest”的加速芯片Nervana Neural Net L-1000可能与 NNP-I 一起出现。这种16nm 芯片的24个计算集群提供的AI训练性能是同类芯片的10倍,是英特尔首款NNP芯片Lake Crest的3-4倍。

Singer不愿透露更多信息,但他表示,有关Spring Crest 的更多细节将在未来几个月内公布。

光子集成电路

根据英特尔AI产品部门内负责硅光子组的Wierzynski所说,NNP-I和Spring Crest之外的芯片可能与如今的AI加速器芯片截然不同。目前,光子集成电路(光学芯片的基础)的工作正在进行中,与同类电子集成电路相比,光子集成电路有许多优点。

Wierzynski表示:“几年前,麻省理工学院出版的一篇论文吸引了我的注意。文中提到了在电子产品使用光子。光子具有非常好的特性,它们可以在物质中快速移动,而且你可以通过一些方式控制光,让它为你做有意义的事请。”

Wierzynski指的是总部位于波士顿的光子技术创业公司Lightelligence首席执行官沈亦晨,与师从麻省理工学院物理系教授Marin Soljacic的一名光子材料的博士学生于2017年在《自然光子学》杂志上发表的一篇研究论文,文中描述了一种利用光学干涉实现神经网络工作负载的新方法。

Wierzynski说:“加速深度学习的关键问题之一是,在芯片越来越小的情况下,如何满足这种延迟越来越低的需求?我们在挑战硅芯片的极限。这说明一方面你需要一定的计算性能,同时又需要在一定程度上控制功耗。”

为此,像Lightelligence这样的光学芯片只需要有限的能量,因为光产生的热量比电少。而且光也不易受环境温度、电磁场和其他噪音的影响。

此外,采用光子的设计中,延迟比硅材料改善了10,000倍,同时功耗水平还降低了几个数量级。在初步的测试中,与最先进的电子芯片相比,某些矩阵矢量乘法运算速度提高了100倍。

Wierzynski说:“我们希望你能够使用与人们现在使用的AI模型很相近的模型。我们也正在学习更多关于如何大规模构建光子电路的知识。这听起来很像《星际迷航》。”

然而,这并非一件易事。正如Wierzynski所指出的那样,除了矩阵乘法之外,神经网络还有第二个基本特征:非线性。如果没有非线性,那么神经网络只能简单地计算输入的加权和,而不能做出预测。遗憾的是,关于在光学领域中可以执行何种非线性操作的问题仍然存在。一种可能的解决方案是,在同一芯片上结合硅和光学电路的混合方法。Wierzynski表示,神经网络的一些部分可以采用光学的方式运行,而其余的部分则仍以电子的方式运行。

但是,这并不能解决光学芯片的缩放问题。速度非常快的光子电路需要快速的存储器,而且还需要将所有元件(包括激光器、调制器和光学组合器)全部封装在大约200毫米的晶圆上。

Wierzynski说:“任何制造过程中都存在不完善之处,这意味着芯片内部和芯片之间会有细微的变化,这些会影响计算的准确性。”

幸运的是,他和同事们正在努力寻找解决方案。在最近的一篇论文中,他们描述了在马赫-曾德尔干涉仪(Mach–Zehnder interferometer,简称MZI)上构建AI系统的两种架构,MZIs 是一种光子电路,经过设置后可以在两束光的相位相关的量之间执行2×2矩阵乘法。

在基准手写数字识别(MNIST)的深度学习任务上,对这两种体系结构进行模拟训练后,研究人员发现,在双精度浮点的精度下,GridNet 的准确度比FFTNet更高(98%对95%)。重要的是,FFTNet表现出强大的稳健性,即使加入了人工噪声,它的准确率也从未低于50%。

Wierzynski表示,这项研究为人工智能软件训练技术奠定了基础,可以避免在制造后对光学芯片进行微调,因此省时省力。

他补充道:“这是英特尔在过去几十年中为光电路开发的非常复杂的制造技术,同时英特尔也赋予了这种技术一个全新的目的。虽然目前这种技术还处于初期阶段,这个领域内还有大量工作需要做,但我已然兴奋不已了。”

<上一页  1  2  
声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    人工智能 猎头职位 更多
    扫码关注公众号
    OFweek人工智能网
    获取更多精彩内容
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号