订阅
纠错
加入自媒体

用机器学习为企业赋能,AWS如何消除人工智能门槛

2020-05-28 17:45
趣味科技
关注

Amazon SageMaker在中国正式上线

在企业纷纷开展数字化转型的今天,中国各行各业的企业也对人工智能投入了极大的关注。根据IDC的统计数据,当前40%的企业数字化转型项目都会运用人工智能。IDC还预计,到2023年,中国人工智能市场规模将达到979亿美元,2018-2023年复合增长率为28.4%。

“放眼全球各地,从初创公司到大型企业,部署机器学习普遍都是重中之重。几乎每一个行业和细分市场的企业,都开始将机器学习应用于其工作负载,从数据中发掘价值、获取洞察、提升业务。”张侠博士向趣味科技表示,“包括本次疫情期间大家也都有目共睹,数字化转型做得好的企业往往表现都非常优秀。我们说的数字化转型实际体现在很多方面,包括客户体验、运营、决策、创新、竞争等,都是下一步经济发展、企业发展的关键。大数据分析和机器学习是其中两个重要的支撑点。一个企业如果抓好了这两点,就可以更好地准备就绪,在下一阶段的发展中处在一个非常有利的地位。” ?

2020年5月12日,Amazon SageMaker在AWS中国(宁夏)和(北京)区域正式上线,其中AWS中国(宁夏)区域由西云数据运营,(北京)区域则由光环新网运营。

“Amazon SageMaker在AWS中国(宁夏)区域和AWS中国(北京)区域的上线,将帮助更多中国客户去除机器学习涉及的混乱和复杂性,让他们能够胜任构建、训练和部署模型的工作,来应对新的挑战。”AWS全球副总裁及大中华区执行董事张文翊表示。

来自客户与合作伙伴的现身说法

谈起在使用Amazon SageMaker中的实际体验感受,AWS的客户和合作伙伴无疑最有发言权。

作为一家专门从事移动应用程序开发的公司,大宇无限主要为中东、东南亚和拉丁美洲等新兴市场提供移动短视频服务。然而对于一家初创企业来说,要想构建一个可以满足海量用户、千万级视频推荐,以及相匹配的机器学习平台,无疑是一项非常艰巨的挑战。

“SageMaker的出现,帮助我们实现了从0到1的突破。它极大地简化了整个机器学习系统的构建、训练和部署流程,而且许多算法都已经做了非常不错的优化。我们完全不需要构建基础设施,只用做好训练数据的准备,直接调用接口、设置参数,基本上几个命令就可以直接部署上线。”大宇无限机器学习技术总监苏映滨向趣味科技透露,“虽然我们一开始经验也不多,但是通过SageMaker,我们仅仅用了三个月的时间就完成了整个系统的搭建,训练成本也比自己搭建更加便宜,估算平均能节省70%的训练成本。”

苏映滨指出,在Amazon SageMaker的帮助下,公司不仅节省了大量的时间和精力,而且基本上不用投入运维人力,服务的稳定性也得到了非常可靠的保证。

作为一家云端的原生云咨询服务公司,伊克罗德是AWS的核心级咨询合作伙伴(APN Premier Consulting Partner)。其基于AWS的解决方案,可以帮助用户极大地减少开发时间和降低运营费用。

“最近几年,人工智能领域的讨论非常热烈。随着算力和算法的升级,以及数据量的扩张,人工智能可以解决的问题越来越多,光是亚马逊自己就带来了很多人工智能方面的应用,我们的许多客户看到这些应用也非常兴奋。不过面对不同的产业、不同的客户、不同的场景、不同的需求,我们必须有一个很好的平台才能帮助所有客户达到他们的目标。”伊克罗德产品经理陈昶佑表示。

Amazon SageMaker就是这样一个内嵌众多高效能算法、兼具效能和效力,能够帮助用户节省大量时间和成本优化的人工智能开发平台。通过Amazon SageMaker平台,伊克罗德可以快速将标签标注、文本分析、语意理解、预测分类、推荐系统与诈欺侦测等导入AI解决方案,针对客户实际遇到的商业问题,为其量身打造能够真正解决问题的端到端AI应用。

“随着Amazon SageMaker在中国的落地,相信伊克罗德结合Amazon SageMaker的解决方案,未来也将会为更多的中国客户提供服务。”陈昶佑说道。

<上一页  1  2  3  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    人工智能 猎头职位 更多
    扫码关注公众号
    OFweek人工智能网
    获取更多精彩内容
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号