订阅
纠错
加入自媒体

番茄路径优化系统介绍

2020-06-04 08:33
程序猿声
关注

番茄路径优化系统介绍

大家好,最近消失了一阵子。因为这两周一直在折腾一款产品。事情是这样的,此前搞算法一直是和命令行打交道基本上,搞得心烦,然后前阵子上头条偶然看到一些前端框架做的系统,感觉还挺好看的,也蛮有趣的。于是就跃跃欲试想尝试下新的东西,加上此前不是做了很多算法嘛,有了一定的基础积累,于是想着把算法和UI结合起来,搞款能用的算法产品试试。

番茄路径优化系统介绍

1、问题背景

整个项目还是基于VRP的一个背景,处理的问题在涵盖经典VRPTW的基础上,还包括了处理以下约束的能力:

- 多时间窗(一般由于客户营业休息时间等安排,会允许出现多个配送时间窗)

- 多车型(涵盖冷链车型和常规车型,大型车辆和小型车辆等,能够进行混合配送)

- 交通管制约束(有些地方不允许大型的车辆进入,只能安排小型车进行配送)

- 时间窗为硬时间窗(早到等待,不允许晚到)

- 客户需求多样化(常规的货物,冷链配送要求的货物)

- 等等

番茄路径优化系统介绍

2、算法性能

系统的核心算法引擎基于启发式算法开发,具有比较优秀的性能。不过口说无凭,将我们的算法和cplex进行对比,首先是小规模算例上的对比(规定了CPLEX求解时间上限为1小时):

番茄路径优化系统介绍

可以看到,相比较cplex而言,我们的算法有以下特点:

小规模算例对比

- 质量更高:算例(1-7)我们的算法均取得了与CPLEX同样的最优解,在算例(8-11)上我们的算法取得了比CPLEX在1小时内求得的可行解更优的解(表中值越低越好)

- 时间更快:除了算例1时间略高于CPLEX外,其余算例时间均比CPLEX低。且CPLEX的求解时间随着问题规模增加呈指数增长。当规模变大时,问题的求解时间急剧增加,在现实中很难应用。而我们的算法求解时间随问题规模增长呈线性增长,能够在较快的时间内求解较大规模的问题(分钟级)。

在大规模算例下(客户节点60-200时),我们的算法求解结果与CPLEX在1小时内求得的可行解进行对比:

番茄路径优化系统介绍

番茄路径优化系统介绍

大规模算例下对比

-相比商业求解器CPLEX在1小时内求得的可行解,我们的算法得出的解成本更低。

-如图所示(时间越少越好),可以看出,在客户规模为60-200的算例下,我们算法的求解时间远低于CPLEX的求解时间。

同时为了弥补启发式算法在求解质量上的不足,我在算法中应用了一种全新的“邻域搜索多样化”技术

1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    人工智能 猎头职位 更多
    扫码关注公众号
    OFweek人工智能网
    获取更多精彩内容
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号