订阅
纠错
加入自媒体

CVPR2020 | 夜间检测挑战赛两冠一亚,为自动驾驶保驾护航

2020-06-23 14:24
深兰科技
关注

近日,由 CVPR 2020 Workshop 举办的 NightOwls Detection Challenge 公布了最终结果。来自深兰科技的 DeepBlueAI 团队斩获了“单帧行人检测”和“多帧行人检测”两个赛道的冠军,以及“检测单帧中所有物体”赛道的亚军。

竞赛的主要目的是进行夜间行人或物体检测,是许多系统,尤其是自动驾驶汽车安全可靠的关键之一。众所周知,熊猫智能公交车是深兰科技自动驾驶核心产品,自2019年获得了广州、长沙、上海、武汉的自动驾驶测试牌照后,今年5月又成功摘得深圳智能网联汽车道路测试牌照。此次冠亚军方案,将与白天行人检测结合,打造适用于不同天气条件的全天候行人检测系统,并有望在熊猫智能公交上进行应用,为其安全行驶保驾护航。

深兰科技坚持以“人工智能,服务民生”为理念,响应国家政策号召,深刻洞察民众痛点和需求,致力于把高质量的人工智能产品和解决方案带给更多的社会大众,以匠心研发的熊猫智能公交车将作为智能城市公共交通领域的“新基建”,用于提升公众出行新体验。

以下将为大家介绍 DeepBlueAI 团队的解决方案。

NightOwls 检测挑战赛简介

检测 RGB 摄像机拍摄的夜间场景图片中的行人,是一个非常重要但是未被充分重视的问题,当前最新的视觉检测算法并不能很好地预测出结果。官方 baseline 在 Caltech(著名行人检测数据集)上的 Miss Rate(越小越好)可以达到 7.36%,但在夜间行人数据集上却只能达到 63.99%。

夜间行人检测是许多系统(如安全可靠的自动驾驶汽车)的关键组成部分,但使用计算机视觉方法解决夜间场景的检测问题并未受到太多关注,因此 CVPR 2020 Scalability in Autonomous Driving Workshop 开展了相应的比赛。

NightOwls Detetection Challenge 2020 共有三个赛题:单帧行人检测(该赛题与 2019 年相同)、多帧行人检测,以及检测单帧中所有物体(包括行人、自行车、摩托车三个类别):

Pedestrian Detection from a Single Frame (same as 2019 competition)Pedestrian Detection from a Multiple FramesAll Objects Detection (pedestrian, cyclist, motorbike) from a Single Frame

赛题介绍

夜间行人数据集示例

Track 1: Pedestrian detection from a single frame

该任务只要求检测行人(对应 Ground truth 中 category_id = 1 的行人类别),且所用算法只能将当前帧用作检测的输入,该题目与 ICCV 2019 NightOwls 挑战赛相同。

Track 2: Pedestrian detection from multiple frames

该任务的要求与任务 1 相同,都是只检测行人,但是该任务允许使用当前帧以及所有先前帧 (N, N-1, N-2, …) 来预测当前帧的行人。

这两个任务的数据集由 279000 张全注释的图片组成,这些图片来源于欧洲多个城市黎明和夜间的 40 个视频,并涵盖了不同的天气条件。

模型效果评估使用的是行人检测中常用的指标Average Miss Rate metric,但是仅考虑高度 > = 50px 的非遮挡目标。

Track 3: All Objects Detection (pedestrian, cyclist, motorbike) from a Single Frame

该任务要求检测出帧里所有在训练集中出现过的类别,包括自行车、摩托车,并且不允许使用视频序列信息。

1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    人工智能 猎头职位 更多
    扫码关注公众号
    OFweek人工智能网
    获取更多精彩内容
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号