AI赋能药物研发背后的逻辑
人工智能是赋予计算机感知、学习、推理及协助决策的能力,从而通过与人类相似的方式来解决问题的一组技术。利用AI技术在自然语言处理、图像识别、深度学习和认知计算等方面的优势,可以协助药物专家提高新药研发各个环节的效率。
简单来说,AI主要可以帮助人类找到难以发现的潜在关系和利用算法来增强计算能力。AI具备自然语言处理、图像识别、机器学习和深度学习能力,不仅能够更快地发现显性关系而且能够挖掘那些不易被药物专家发现的隐性关系,构建药物、疾病和基因之间的深层次关系。在计算方面,AI具备的强大认知计算能力,可以对候选化合物进行虚拟筛选,更快的筛选出具有较高活性的化合物为后期临床试验做准备。
AI在新药研发领域主要应用于靶点发现、化合物合成、化合物筛选、性质预测、晶型预测、患者招募、优化临床试验设计和药物重定向等多个应用场景。DEEP KNOWLEDGE ANALYTICS “PHARMA DIVISION” 对全球150家AI制药创业公司的分析报告《AI FOR DRUG DISCOVERY, BIOMARKER DEVELOPMENT AND ADVANCED R&D LANDSCAPE OVERVIEW 2019 / Q1”》指出,聚焦于利用AI进行药物设计的公司最多,其次是数据收集和分析。
AI赋能药物研发公司总览
AI赋能药物研发领域繁荣的背后逻辑
新药研发面临着研发周期长,成功率低,费用高的问题,提升cost effective是当前药企发展的重要议题,AI会是一个强有力的突破点,也因此近年在AI制药领域诞生了数百家的创业公司。
从全球医药市场销售额看,2017年已经突破12000亿美元,预计到2021年销售总额可达到14750亿美元2012~2021年的年均复合增长率为4.9%。而同时期中国医药市场的销售额将从2012年的770亿美元增长到2021年的1780亿美元,年均复合增长率达到9.8%,是全球医药市场的2倍。这表明全球医药市场在稳步增长,而中国医药市场的增长更快,具备更好的发展潜力。
2012年-2021年 全球和中国医药市场销量变化情况
虽然医药市场在稳定增长,但是药物研发成本越来越高。EvaluatePharma2019年的报告显示,2018年全球药企的研发费用达到了1790亿美元,预计2024年会达到2130亿美元,年复合增长率约3%,约占销售收入的20%。研发成本日益增高,是药企的重要成本支出。
2010-2014年 全球药物研发总成本
从中国的具体情况来说,政府从2015年开始进行了大力的医疗体制改革,目的是降低医保支出,解决看病难看病贵的问题。中国医疗正在经历从保证基本需求向提高优质医疗医药可及性转变的过程,即从首先解决有没有的问题,转向解决质量和费用的问题。
在制药领域,2016年3月5日,国务院办公厅印发《关于开展仿制药质量和疗效一致性评价的意见》(国办发〔2016〕8号),标志中国仿制药质量和疗效一致性评价工作全面展开。
以前中国仿制药有自己的特点,很多仿制药与原研药在质量上有较大区别,原研药专利悬崖现象在中国没有出现,药品价格居高不下,而仿制药一致性评价政策的实施就是解决药品质量的问题,使得仿制药疗效与原研一致。2018年开始推行药品集中采购政策解决药品价格问题。同年12月6日“4+7”集采中药品的中标价格大幅下降,平均降幅达到了52%。药品巨大幅度的降价使得仿制药的利润空间非常有限,迫使制药企业必须要进行创新药的研发才可能赢得继续生存发展的一席之地。
然而创新药需要大量的资金和时间,考虑研发失败的风险,新的数据估算一款创新药成功上市需要26亿美元大约14年的研发周期,大概比2003年增长了145%,巨额的成本是一般药企难以负担的,所以有效够降低药物研发成本是药企的必然之路。也因此AI技术赋能制药领域备受关注,成为了2019年最热的话题之一。
AI赋能药物研发时间线
从科学的角度来解释,人类2万多个可编码蛋白的基因,其中10%-15%与疾病相关,而可作为小分子药物靶点的小于700种,容易的靶点已经开发殆尽,剩下的都是难度很高的或者难以成药的靶点,需要投入更多的时间和经济成本才可能成功。低垂的果实已经没有了,如何找增量以及提高效率成为了当前新药研发的主题,能快速摘到深藏或隐藏的果实、又或者将树叶树枝变为果实(寻找增量)的公司才是未来制药领域的赢家。
当前随着信息技术的迅猛发展,AI技术正在成为制药领域潜在有力的突破点。比如利用AI强大的发现能力寻找新的药物靶点,药物重定向,挖掘微生物组宝库等等应用。虽然仍有很多问题和质疑,但却是必须要拥抱的未来方向。
AI制药领域发展的限制因素
1
学科交叉人才稀缺
AI赋能药物研发是一个信息科技赋能传统行业的交叉领域,既需要AI的人才也需要懂药物研发的人才,同时双方必须要能够理解对方的专业语言和思路,才能很好地配合。
这样的团队很难搭建,需要长时间的磨合。相应的人才储备对应不同的商业模式,创新药的开发链条长环节多,优质人才要熟悉整个过程,某个环节的缺失可能会拖慢整个过程,这样只能单点突破选择CRO的商业模式。
2
数据获取难
AI训练模型需要优质的数据,而新药领域的数据大都在药企,公开的数据比较有限,所以如何获取优质的数据是AI制药初创公司需要解决的问题。能够跟跨国药企合作的初创公司在市场上会非常具有竞争力。
中国过去做创新药的实践很少,但是近几年实施了多项政策鼓励创新药发展,呈现了繁荣发展的态势,药企相关的数据虽然不比跨国药企,但是也在快速积累。另外中国CRO公司(如药明康德等)发展迅速,掌握了大量的数据,尤其是临床前的研发数据。中国的基础科研突飞猛进,科研论文数量已经是世界第一,背后也积累了海量的数据。AI制药的初创企业要积极跟学术界和产业龙头合作,获得优质数据是立足之本。
3
商业模式的选择
新药开发周期很长,目前也没有AI制药公司宣布利用AI技术开发的药物成功上市,AI在新药开发上的价值也不易量化评估,在做好长期奋斗的同时,开展一些CRO的业务来补充公司的现金也是不错的选择,不过需要思考好如何处理好CRO和做药的商业模式。
公司自己做药物开发就是药企的竞争对手,而CRO模式是为药企提供服务,两种商业模式可能会存在一些利益冲突,所以要想清楚开展这两种商业模式的具体环节,阶段,比重等问题。从商业价值的角度来说,药物开发比CRO的市场更大,收益更高,但是对公司的挑战更大,对人才的要求也更高。
4
开发强AI,才能更好地体现出AI在药物开发中的价值
弱人工智能(Artificial Narrow Intelligence,简称ANI)是指仅在单个领域比较牛的人工智能程序。比如的谷歌AlphaGo,便是弱人工智能的典型代表。其特征便是虽然很擅长下围棋,却无法与你玩一把飞行棋。
强人工智能(Artificial General Intelligence,简称AGI)则是能够达到人类级别的人工智能程序。不同于弱人工智能,强人工智能可以像人类一样应对不同层面的问题,而不仅仅只是下下围棋,写财报报道。不仅如此,它还具有自我学习、理解复杂理念等多种能力。
也正因此,强人工智能程序的开发比弱人工智能要困难很多。而药物开发涉及环节众多,虽然目前一些环节已经在应用AI,但是需要强人工智能才能打通各个环节,更好地赋能制药领域。
中国AI药物研发公司现状
中国对于创新药的研发有着非常强烈的需求,但对创新药研发历史较短,经验不足,而且研发投入的巨额资金和长周期的风险使得国内药企对于创新药开发既爱又恨。而利用AI技术解决现在创新药研发周期长失败率高的问题有非常好的前景,也因此,在中国诞生了大大小小数十家专注AI制药的创新企业。
中经合集团看好AI制药领域的发展潜力,也已经投资了数家以不同角度切入制药领域的“AI+制药”的公司:
搭建AI技术平台提高药物筛选和药物设计的效率——英飞智药,开发真正可以赋能药物发现阶段各个环节的AI技术进行药物研发;
利用AI从新的作用机制——Panorama,利用深度学习对海量RNA组学数据进行分析开发靶向RNA剪接过程的小分子或者大分子药物;
新的靶点和组合——Enginebio,全基因功能网络分析寻找新的靶点和组合;
新的资源宝库——Deepbiome,利用AI对海量的微生物组数据进行分析挖掘,越过微生态药阶段直接找到背后的小分子药物。
去年中经合集团还收获了动脉网数字医疗十佳投资机构和中国AI药物开发投资机构top5的奖项。
Panorama Medicine是一家由风险资本投资的创业公司,由世界顶尖的计算和实验RNA生物学家组成的多学科团队创立。Panorama利用独有的基因大数据分析和深度学习技术加速药物研发过程,旨在高效开发由于RNA剪接异常引起的疾病的药物。
英飞智药是一家以创新药物为目标,以人工智能为驱动的初创公司。英飞智药在新药研发中充分利用并持续发展先进的AI药物发现技术,打造自主知识产权的AI+新药研发平台—智药大脑TM。英飞智药拥有多款候选药物的成功开发经验和业界领先的开发成功率,将创新候选药的开发周期从3-6年缩短到6个月至2年,致力于高效批量开发自主创新药物品种,也为医药企业的新药研发提供先进的技术服务和知识产权解决方案。
DeepBiome是由来自Harvard/Broad研究所的团队创立的一家AI药物发现公司。他们聚焦于挖掘人类微生物组这一极具前景和前沿的领域,这是一个基本未被开发的药物先导化合物的宝库。DeepBiome希望利用最新的人工智能(AI)技术,彻底改变目前高成本、低效的药物发现过程。
Enginebio是由世界领先的MIT Broad研究所的科学家Tim Lu创立的利用人工智能技术进行药物发现的公司。在计算科学、合成生物学和药物发现领域的专家领导下,公司将高通量、大规模并行的生物实验与高通量计算结合起来,破译生物医学网络,增强药物开发过程产生新的药物。
参考文献:
Mak, K.K., Pichika, M.R. Artificial intelligence in drug development: present status and future prospects, Drug Discov. Today (2018), https://doi.org/ 10.1016/j.drudis.2018.11.014
FOR DRUG DISCOVERY, BIOMARKER DEVELOPMENT AND ADVANCED R&D LANDSCAPE OVERVIEW 2019 / Q3,https://www.ai-pharma.dka.global/AI-for-DD-2019-Q3
AI新药研发市场发展现状及趋势报告,动脉网蛋壳研究院
World Preview 2019, Outlook to 2024, EvaluatePharma
作者:动脉网
最新活动更多
-
11月28日立即报名>>> 2024工程师系列—工业电子技术在线会议
-
12月19日立即报名>> 【线下会议】OFweek 2024(第九届)物联网产业大会
-
即日-12.26火热报名中>> OFweek2024中国智造CIO在线峰会
-
即日-2025.8.1立即下载>> 《2024智能制造产业高端化、智能化、绿色化发展蓝皮书》
-
精彩回顾立即查看>> 2024 智能家居出海论坛
-
精彩回顾立即查看>> 【在线会议】多物理场仿真助跑新能源汽车
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论