2020年计算机视觉技术最新学习路线总结 (含时间分配建议)
建议时间:每周6-7小时
图像分割简介:图像分割技术的分步介绍https://www.analyticsvidhya.com/blog/2019/04/introduction-image-segmentation-techniques-python实现Mask R-CNN进行图像分割https://www.analyticsvidhya.com/blog/2019/07/computer-vision-implementing-mask-r-cnn-image-segmentationMask R-CNN论文https://arxiv.org/pdf/1703.06870.pdfMask R-CNN GitHub存储库https://github.com/matterport/Mask_RCNN项目:COCO分割挑战http://cocodataset.org/#downloadAttention 模型:Sequence-to-Sequence Modeling with Attentionhttps://www.analyticsvidhya.com/blog/2018/03/essentials-of-deep-learning-sequence-to-sequence-modelling-with-attention-part-iSequence-to-Sequence Models by Stanfordhttps://nlp.stanford.edu/~johnhew/public/14-seq2seq.pdf第7个月 – 探索深度学习工具目标:这是一个非常有趣的学习月!到目前为止,我们已经涵盖了许多计算机视觉概念,现在是时候动手使用最先进的深度学习框架了!这取决于你自己的选择,但我们建议你现在使用行业中最常见的两种工具——PyTorch和TensorFlow。尝试使用这两种工具中的任何一种来实现你到目前为止所涵盖的所有概念。
建议时间:每周6-7小时
PyTorch:PyTorch教程https://pytorch.org/tutorials/PyTorch的初学者友好指南https://www.analyticsvidhya.com/blog/2019/09/introduction-to-pytorch-from-scratchPyTorch中文官方教程(可选)http://pytorch123.com
TensorFlow:
TensorFlow教程https://www.tensorflow.org/tutorialsTensorFlow简介https://www.analyticsvidhya.com/blog/2016/10/an-introduction-to-implementing-neural-networks-using-tensorflow第8个月 – 了解NLP和图像字幕的基础目标:这是你专业化的开始。这是将你的深度学习知识与自然语言处理(NLP)概念结合起来来解决图像字幕项目。
建议时间:每周6-7小时
自然语言处理(NLP)的基础知识:斯坦福-词嵌入:https://youtu.be/ERibwqs9p38递归神经网络(RNN)简介:https://youtu.be/UNmqTiOnRfgRNN教程http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/了解图像字幕自动图像字幕https://cs.stanford.edu/people/karpathy/sfmltalk.pdf使用深度学习的图像字幕https://www.analyticsvidhya.com/blog/2018/04/solving-an-image-captioning-task-using-deep-learning项目:COCO字幕挑战赛http://cocodataset.org/#download第9个月 – 熟悉生成对抗网络(GAN)目标:9月,你将了解生成对抗网络(GAN)。自从Ian Goodfellow于2014年正式推出GAN以来,GANs就火爆了起来。目前,GANs的实际应用很多,包括修复、生成图像等。
建议时间:每周6-7小时
了解生成对抗网络(GAN):Ian Goodfellow的生成对抗网络(GAN):https://youtu.be/HGYYEUSm-0QGAN 论文https://arxiv.org/pdf/1406.2661.pdf生成对抗网络的最新进展https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8667290Keras-GANhttps://github.com/eriklindernoren/Keras-GAN第10个月 – 视频分析简介目标:视频分析是计算机视觉中一个蓬勃发展的应用。到2020年(及以后),对这项技能的需求只增不减,因此学习如何使用视频数据集的知识是必要的。
最新活动更多
-
1月8日火热报名中>> Allegro助力汽车电气化和底盘解决方案优化在线研讨会
-
即日-1.16立即报名>>> 【在线会议】ImSym 开启全流程成像仿真时代
-
即日-1.24立即参与>>> 【限时免费】安森美:Treo 平台带来出色的精密模拟
-
2月28日火热报名中>> 【免费试用】东集技术年终福利——免费试用活动
-
4日10日立即报名>> OFweek 2025(第十四届)中国机器人产业大会
-
7.30-8.1火热报名中>> 全数会2025(第六届)机器人及智能工厂展
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论