订阅
纠错
加入自媒体

如何在自定义的数据集上训练YOLOv5?

2020-08-31 09:25
磐创AI
关注

在我们的自定义数据集上可视化tensorboard结果如果你因为一些原因不能把张量可视化,可以用utils.plot_result来绘制并保存为result.png。

你需要在验证评估分数达到其最高点处获取训练好的模型权重。可视化YOLOv5训练数据在训练过程中,我们可以可视化真实训练数据和增强后的训练数据。

我们的真实训练数据

我们的训练数据采用自动YOLOv5增强对测试图像运行YOLOv5推断现在我们利用我们训练好的模型,对测试图像进行推理。训练完成后,模型权重将保存到 weights/。推理过程,我们调用这些权重和一个指定模型置信度的conf(要求的置信度越高,预测越少)、以及一个推理源。源可以接受一个包含图像、单个图像、视频文件以及设备的网络摄像头端口的目录。对于源代码,我将testjpg移到test-infer/。!python detect.py --weights weights/last_yolov5s_custom.pt --img 416 --conf 0.4 --source ../test_infer推理时间非常快,在我们的 Tesla P100 上,YOLOv5s 达到了每秒142帧!!

以142 FPS(0.007s/图像)的速度推断YOLOv5s最后,我们在测试图像上可视化我们的检测器推断结果。

测试图像的YOLOv5推理导出并保存YOLOv5权重以供将来推断既然我们定制的YOLOv5物体检测器已经通过验证,我们需要从Colab中取出权重,用于实时计算机视觉任务,为此我们导入一个Google驱动器模块并将其发送出去。from google.colab import drivedrive.mount('/content/gdrive')
%cp /content/yolov5/weights/last_yolov5s_custom.pt /content/gdrive/My Drive结论我们希望你可以训练属于你自己的定制YOLOv5检测器!使用 YOLOv5 非常方便,而且训练迅速,推理迅速,表现出色。让我们把它弄出来!参考链接:https://blog.roboflow.ai/how-to-train-yolov5-on-a-custom-dataset/

<上一页  1  2  3  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    人工智能 猎头职位 更多
    扫码关注公众号
    OFweek人工智能网
    获取更多精彩内容
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号