订阅
纠错
加入自媒体

学会hive中的explain 能为我们在生产实践中带来哪些便利?

2021-03-13 09:09
园陌
关注

这两个执行计划树里面包含这条sql语句的 operator:

map端第一个操作肯定是加载表,所以就是 TableScan 表扫描操作,常见的属性:

alias: 表名称

Statistics: 表统计信息,包含表中数据条数,数据大小等

Select Operator: 选取操作,常见的属性 :

expressions:需要的字段名称及字段类型

outputColumnNames:输出的列名称

Statistics:表统计信息,包含表中数据条数,数据大小等

Group By Operator:分组聚合操作,常见的属性:

aggregations:显示聚合函数信息

mode:聚合模式,值有 hash:随机聚合,就是hash partition;partial:局部聚合;final:最终聚合

keys:分组的字段,如果没有分组,则没有此字段

outputColumnNames:聚合之后输出列名

Statistics: 表统计信息,包含分组聚合之后的数据条数,数据大小等

Reduce Output Operator:输出到reduce操作,常见属性:

sort order:值为空 不排序;值为 + 正序排序,值为 - 倒序排序;值为 +-  排序的列为两列,第一列为正序,第二列为倒序

Filter Operator:过滤操作,常见的属性:

predicate:过滤条件,如sql语句中的where id>=1,则此处显示(id >= 1)

Map Join Operator:join 操作,常见的属性:

condition map:join方式 ,如Inner Join 0 to 1 Left Outer Join0 to 2

keys: join 的条件字段

outputColumnNames: join 完成之后输出的字段

Statistics: join 完成之后生成的数据条数,大小等

File Output Operator:文件输出操作,常见的属性

compressed:是否压缩

table:表的信息,包含输入输出文件格式化方式,序列化方式等

Fetch Operator 客户端获取数据操作,常见的属性:

limit,值为 -1 表示不限制条数,其他值为限制的条数

好,学到这里再翻到上面 explain 的查询结果,是不是感觉基本都能看懂了。

实践

本节介绍 explain 能够为我们在生产实践中带来哪些便利及解决我们哪些迷惑

1. join 语句会过滤 null 的值吗?

现在,我们在hive cli 输入以下查询计划语句

select a.id,b.user_name from test1 a join test2 b on a.id=b.id;

问:上面这条 join 语句会过滤 id 为 null 的值吗

执行下面语句:

explain select a.id,b.user_name from test1 a join test2 b on a.id=b.id;

我们来看结果 (为了适应页面展示,仅截取了部分输出信息):

TableScan
alias: a
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Filter Operator
   predicate: id is not null (type: boolean)
   Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
   Select Operator
       expressions: id (type: int)
       outputColumnNames: _col0
       Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
       HashTable Sink Operator
          keys:
            0 _col0 (type: int)
            1 _col0 (type: int)
...

从上述结果可以看到 predicate: id is not null 这样一行,说明 join 时会自动过滤掉关联字段为 null值的情况,但 left join 或 full join 是不会自动过滤的,大家可以自行尝试下。

2. group by 分组语句会进行排序吗?

看下面这条sql

select id,max(user_name) from test1 group by id;

问:group by 分组语句会进行排序吗

直接来看 explain 之后结果 (为了适应页面展示,仅截取了部分输出信息)

TableScan
   alias: test1
   Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
   Select Operator
       expressions: id (type: int), user_name (type: string)
       outputColumnNames: id, user_name
       Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
       Group By Operator
          aggregations: max(user_name)
          keys: id (type: int)
          mode: hash
          outputColumnNames: _col0, _col1
          Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
          Reduce Output Operator
            key expressions: _col0 (type: int)
            sort order: +
            Map-reduce partition columns: _col0 (type: int)
            Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
            value expressions: _col1 (type: string)
...

我们看 Group By Operator,里面有 keys: id (type: int) 说明按照 id 进行分组的,再往下看还有 sort order: + ,说明是按照 id 字段进行正序排序的。

3. 哪条sql执行效率高呢?

观察两条sql语句

SELECT
   a.id,
   b.user_name
FROM
   test1 a
JOIN test2 b ON a.id = b.id
WHERE
   a.id > 2;
SELECT
   a.id,
   b.user_name
FROM
   (SELECT * FROM test1 WHERE id > 2) a
JOIN test2 b ON a.id = b.id;

这两条sql语句输出的结果是一样的,但是哪条sql执行效率高呢  
有人说第一条sql执行效率高,因为第二条sql有子查询,子查询会影响性能  
有人说第二条sql执行效率高,因为先过滤之后,在进行join时的条数减少了,所以执行效率就高了

到底哪条sql效率高呢,我们直接在sql语句前面加上 explain,看下执行计划不就知道了嘛

在第一条sql语句前加上 explain,得到如下结果

hive (default)> explain select a.id,b.user_name from test1 a join test2 b on a.id=b.id where a.id >2;
OK
Explain
STAGE DEPENDENCIES:
 Stage-4 is a root stage
 Stage-3 depends on stages: Stage-4
 Stage-0 depends on stages: Stage-3
STAGE PLANS:
 Stage: Stage-4
   Map Reduce Local Work
     Alias -> Map Local Tables:
       $hdt$_0:a
         Fetch Operator
           limit: -1
     Alias -> Map Local Operator Tree:
       $hdt$_0:a
         TableScan
           alias: a
           Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
           Filter Operator
             predicate: (id > 2) (type: boolean)
             Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
             Select Operator
               expressions: id (type: int)
               outputColumnNames: _col0
               Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
               HashTable Sink Operator
                 keys:
                   0 _col0 (type: int)
                   1 _col0 (type: int)
 Stage: Stage-3
   Map Reduce
     Map Operator Tree:
         TableScan
           alias: b
           Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
           Filter Operator
             predicate: (id > 2) (type: boolean)
             Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
             Select Operator
               expressions: id (type: int), user_name (type: string)
               outputColumnNames: _col0, _col1
               Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
               Map Join Operator
                 condition map:
                      Inner Join 0 to 1
                 keys:
                   0 _col0 (type: int)
                   1 _col0 (type: int)
                 outputColumnNames: _col0, _col2
                 Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
                 Select Operator
                   expressions: _col0 (type: int), _col2 (type: string)
                   outputColumnNames: _col0, _col1
                   Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
                   File Output Operator
                     compressed: false
                     Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
                     table:
                         input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                         output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                         serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
     Local Work:
       Map Reduce Local Work
 Stage: Stage-0
   Fetch Operator
     limit: -1
     Processor Tree:
       ListSink

在第二条sql语句前加上 explain,得到如下结果

hive (default)> explain select a.id,b.user_name from(select * from  test1 where id>2 ) a join test2 b on a.id=b.id;
OK
Explain
STAGE DEPENDENCIES:
 Stage-4 is a root stage
 Stage-3 depends on stages: Stage-4
 Stage-0 depends on stages: Stage-3
STAGE PLANS:
 Stage: Stage-4
   Map Reduce Local Work
     Alias -> Map Local Tables:
       $hdt$_0:test1
         Fetch Operator
           limit: -1
     Alias -> Map Local Operator Tree:
       $hdt$_0:test1
         TableScan
           alias: test1
           Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
           Filter Operator
             predicate: (id > 2) (type: boolean)
             Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
             Select Operator
               expressions: id (type: int)
               outputColumnNames: _col0
               Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
               HashTable Sink Operator
                 keys:
                   0 _col0 (type: int)
                   1 _col0 (type: int)
 Stage: Stage-3
   Map Reduce
     Map Operator Tree:
         TableScan
           alias: b
           Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
           Filter Operator
             predicate: (id > 2) (type: boolean)
             Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
             Select Operator
               expressions: id (type: int), user_name (type: string)
               outputColumnNames: _col0, _col1
               Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
               Map Join Operator
                 condition map:
                      Inner Join 0 to 1
                 keys:
                   0 _col0 (type: int)
                   1 _col0 (type: int)
                 outputColumnNames: _col0, _col2
                 Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
                 Select Operator
                   expressions: _col0 (type: int), _col2 (type: string)
                   outputColumnNames: _col0, _col1
                   Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
                   File Output Operator
                     compressed: false
                     Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
                     table:
                         input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                         output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                         serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
     Local Work:
       Map Reduce Local Work
 Stage: Stage-0
   Fetch Operator
     limit: -1
     Processor Tree:
       ListSink

大家有什么发现,除了表别名不一样,其他的执行计划完全一样,都是先进行 where 条件过滤,在进行 join 条件关联。说明 hive 底层会自动帮我们进行优化,所以这两条sql语句执行效率是一样的。

最后

以上仅列举了3个我们生产中既熟悉又有点迷糊的例子,explain 还有很多其他的用途,如查看stage的依赖情况、排查数据倾斜、hive 调优等,小伙伴们可以自行尝试。

<上一页  1  2  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    人工智能 猎头职位 更多
    扫码关注公众号
    OFweek人工智能网
    获取更多精彩内容
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号