2024年大模型行业研究报告
第三章 财务、风险及竞争分析3.1 财务分析和估值方法
图 杜邦分析法
来源:资产信息网 千际投行 iFinD
Dupont分析模型是一种常用的财务分析工具,它通过对企业净资产收益率进行分解,帮助人们更好地理解企业的盈利能力。该模型将净资产收益率分解为三个部分,即利润率、资产周转率和财务杠杆,从而深入剖析各个因素对企业盈利能力的影响。利润率反映企业销售产品或提供服务后的利润水平,资产周转率则反映企业管理资产的效率,财务杠杆则反映企业借债资金对股东权益的影响。通过对这些因素的分析,人们可以更准确地评估企业的盈利能力,并且针对不同的因素进行有针对性的调整和优化,从而提高企业的经营效益。
图 CAPM分析
来源:资产信息网 千际投行 iFinD
CAPM模型,即资本资产定价模型,用于评估投资项目的可行性。该模型通过衡量资本成本和预期回报来计算资产的合理价格。其基于市场效率的假设,假设投资者在决策时会考虑市场整体的风险和回报。该模型将资本成本分为两部分:无风险利率和风险溢价。无风险利率代表投资者可以获得的没有风险的回报率,而风险溢价则衡量了投资者愿意为承担额外风险而要求的额外回报。通过结合资本成本和预期回报率,CAPM模型可以计算出一个合理的资产价格,从而帮助投资者评估投资项目的可行性。这种模型在风险管理和投资决策中被广泛使用,能够提供参考依据,帮助投资者做出明智的选择,并优化投资组合以实现最大化的回报。
估值
1、市盈率法:是企业市值与其净利润之间的比率,它可以反映投资者对企业未来盈利能力的期望。根据同行业公司的市盈率水平,可以合理估计目标企业的估值。
2、市净率法:是企业市值与其净资产之间的比率,它可以反映企业的资产质量和净资产收益能力。根据同行业公司的市净率水平,可以合理估计目标企业的估值。
3.2 驱动因子
我国目前在大模型发展领域仍有较大努力空间,要落实全国新型工业化推进大会部署,以人工智能和制造业深度融合为主线,以智能制造为主攻方向,以场景应用为牵引,夯实人工智能赋能底座,推动制造业全流程智能化,加快重点行业智能升级,大力发展基于大模型的智能装备、软件等智能产品,加强人才、标准、检测能力、开源机制等支撑体系建设,推动人工智能全方位、深层次赋能新型工业化,加快形成新质生产力。
同时,要充分发挥我国完备产业体系和新型信息基础设施优势,坚定信心,从供给侧、需求侧、基础侧协同发力,加快培育面向工业领域的大模型,凝练和开放工业应用场景,深化工业数据开发利用,提升算力供给能力,着力营造良好环境,积极探索人工智能和工业融合发展新路径,形成双向赋能的发展格局。
图 截止2023年7月全球大模型累计数量区域分布情况
来源:资产信息网 千际投行 iFinD
驱动因子
政策助力
随着当前人工智能行业的发展,大模型技术也不断发展,而为推动大模型在行业中的应用,我国及部分省市发布了多项行业政策,支持大模型行业发展。
资本加持
在市场需求的增长以及政策支持的背景下,我国大模型市场规模将不断增长,预计到2025年市场规模将突破300亿元。而多模态大模型作为AI模型的发展方向,在各项相关技术愈发成熟下,其应用领域也将愈发广泛,比如说商业定制、游戏和影视等。而随着其应用领域的不断拓展下,其需求量也将增加,预计2025年我国多模态内容市场规模800亿美元。
应用领域拓展
从融资情况来看,目前多模态大模型行业融资情况较为频繁,在2024年2月已经发生两起投融资事件,分别为Weitu AI 公司获得的天使轮融资和联汇科技获得的战略融资。
3.3 风险分析及管理
风险分析
技术安全风险
数据方面,数据会带来价值偏见、隐私泄露、数据污染等问题;训练数据固有偏见导致模型产生偏见内容;海量训练数据扩大了数据安全和隐私保护风险。算法方面,算法模型生成特性及安全漏洞会引发“幻觉”或虚假信息、模型遭受攻击等风险。
网络安全风险
网络安全主要包括传播的信息部分是有害的和不实的。有害信息包括价值偏见,隐私泄露,还有黄赌毒、涉恐涉暴、仇恨、反讽、歧视、刻板印象等等各种信息污染;不实信息包括虚假信息、伪造、欺诈内容等。也包括由输出信息所直接导致的各类不安全的指令调用、智能体或者具身智能机器人的恶意行为等等。
此外,网络犯罪分子不仅使用勒索软件攻击关键基础设施,而且还掌握了利用生成式AI等新兴技术实施恶行的新手段。
数据收集风险
当前的大模型普遍具有数十亿个参数,有的大模型参数量甚至多达上万亿个,训练时常常用到数万亿甚至数十万亿的语料,需要收集海量的数据,在数据的收集、处理、使用等方面,大模型面临的挑战不容忽视。
一是数据获取的便利性。能否方便、快捷地获取数据,是决定大模型能否成功训练的关键,目前通用类大模型训练的数据大部分来自公开渠道,但专用类大模型需要专业数据,这些数据大都属于企业、研究机构等实体,增加了专用类大模型的训练难度。
二是数据来源的合法性。随着个人信息保护意识的提高,即便是通过公开渠道获取的数据,也存在合法使用的问题。
三是数据质量的可靠性。大模型的预训练不仅需要的数据量大,而且对数据质量有很高的要求。当前,国外大模型和国内部分大模型会选用开源数据集进行训练,这些源于互联网的数据虽然数量巨大,但质量良莠不齐;从中提取符合预训练要求的高质量数据,在数据清洗方面面临着很大挑战,特别是其中高质量的中文数据样本更是少之又少,进一步增加了国内大模型预训练的难度。
资金风险
大模型成本主要由模型开发成本、训练成本、算力成本、数据成本、运维成本等构成,仅训练成本便动辄高达数百万美元。对普通企业和科研机构而言,资金成为一道难以逾越的“门槛”,国内能够承担如此巨大成本开支的企业和科研机构为数不多。
人才风险
与大模型研发密切相关的是人才。国内大模型人才数量严重不足,与美国相比顶尖人才数量少,制约了大模型研发的快速发展。同时,人才质量不够高,伴有外流严重的问题。
风险管理
1、提高算力规模。进一步完善信息基础设施,加快推进“东数西算”步伐,加大算力网络建设力度,为大模型研发运营提供足够算力,同时进一步提高网络速度,降低网络时延,为更多大模型走向应用创造条件。
2、加强数据管理。国家层面加强对数据的管控,明确行业标准,建立数据使用规则,确保大模型训练数据的质量。同时,针对行业数据,破除不同厂家之间数据互相不能查询的壁垒,确保大模型训练有充足、准确的专业数据。
3、加大资金投入。建立国家大模型基金,专门用于大模型的研发、训练等。
4、加大政策支持。面向大模型研发,制订更加优惠的税收政策。针对国有企业在大模型研发上投入的资金,允许以两倍规模计为企业净利润。
5、加大科技投入。解决核心技术“卡脖子”问题,特别是加大人工智能芯片研发制造力度。
6、加快人才队伍建设。加大人才培养和引进力度,在薪资、晋升、住房、子女升学等方面,为高科技人才提供更加宽松的环境。进一步放宽针对国有企业的工资总额管控,为国有企业吸引顶尖人才创造环境。
3.4 竞争分析
发展和行情复盘
我国大模型行业进入较晚,自美国硅谷的OpenAI公司发布ChatGPT后,我国也掀起了大模型领域的浪潮。
在面临掉队的情况下,各大科技巨头、科研院所、初创公司都纷纷下场,部署自己的大模型。2023年3月16日,百度正式推出了基于百度新一代大语言模型的生成式AI产品“文心一言”,成为了率先“跑出来”的国内大模型厂商。文心一言的问世,也拉开了国内“百模大战”的帷幕。此后,阿里、华为、腾讯、京东、科大讯飞、360、字节跳动等科技公司纷纷发布了自家的大模型。同台竞技的玩家,还有科研院所及创业公司。北京智源人工智能研究院发布了“悟道”大模型,上海人工智能实验室推出了“书生”大模型,鹏城实验室研发了“鹏城·脑海”大模型。王小川创立的百川智能、清华计算机系孵化的智谱AI等初创公司如冉冉新星,以卓越的自研能力备受行业关注。
图 大模型技术复盘
来源:资产信息网 千际投行 iFinD
随着大模型的集体涌现,人们发现应用层中蕴藏着更多机会。大模型应用于实际中比单纯研究技术成本更低、变现更快,且市场拥有大量用户,市场规模可观。
大模型引发的创业热潮,直接体现在投融资上。虽然2023年投融资整体行业遇冷,但总体而言,AI行业融资的形势相对仍处于比较热门的状态。截至今年11月20日,人工智能赛道在一级市场的总融资事件为530起,总融资交易额估算有631亿元。
行业收并购重组
2023年十月,百川智能获得的单轮融资是3亿美金投资,智谱AI 2023年累计获得的融资是超25亿人民币(约3.48亿美金)。
2024年,亚马逊表示,将向人工智能初创公司 Anthropic 追加投资 27.5 亿美元,完成去年达成的一项交易,以支持这家人工智能初创公司并扩大两家公司之间的合作伙伴关系。继去年 9 月份宣布的一项早期投资之后,此次注资使亚马逊对 Anthropic 的总投资达到 40 亿美元。
整体大模型领域投融资数额巨大,创融资难度大,风险高。
图 阿里投资的AI大模型公司
来源:资产信息网 千际投行 iFinD
3.5 中国重要参与企业
在中国大模型行业,百度、科大讯飞、腾讯、阿里、月之暗面、华为、商汤、复旦大学、中科院等机构和企业都扮演着至关重要的角色。这些机构和企业通过推出创新的AI大模型和技术,极大地推动了行业的发展和应用广泛化。
2024年5月7日,由华算人工智能研究院、全国高校人工智能与大数据创新联盟从“产学合作协同育人”角度研究并推出“大模型中国50强榜单(2024)”。
表 2024中国大模型TOP50榜单
来源:资产信息网 千际投行 华算人工智能研究院
华为通过其盘古系列大模型,涵盖了自然语言处理(NLP)、计算机视觉(CV)和科学计算等领域,显示出华为在多个AI领域的深入布局。盘古大模型的开发体现了华为在提高AI处理能力和效率方面的重要进展。
图 华为盘古大模型示意图
来源:资产信息网 千际投行 iFinD
阿里巴巴 通过阿里云推动了多个通义系列大模型的开发,包括智能编码助手、AI阅读助手、工作学习AI助手等,极大地丰富了大模型的应用场景。阿里云成为中国大模型的重要AI算力底座,为国内外多个大模型提供了API服务,加速了AI技术的商业化和普及。
图 阿里大模型
来源:资产信息网 千际投行 iFinD
腾讯的混元大模型以其超千亿参数规模和超强的中文处理能力,在市场上获得了显著的地位。2023年以来,腾讯通过将混元大模型整合入微信等应用,大幅提升了用户的互动体验,并通过新技术不断提升模型的性能和应用广度。
图 腾讯大模型
来源:资产信息网 千际投行 iFinD
百度 旗下的文心大模型在推动AI技术商业化和工业应用方面取得了显著成就。文心模型不仅在搜索、信息流和智能音箱等产品中得到应用,还通过百度的飞桨平台支持多个行业的AI转型,显示了其在AI技术推广和应用中的强大能力。
图 文心大模型发展历程
来源:资产信息网 千际投行 iFinD
科大讯飞的讯飞星火认知大模型凭借其在文本生成、语言理解和多模交互等方面的核心能力,成为国内领先的AI大模型之一。科大讯飞通过持续迭代更新其模型,提高AI的功能性和实用性,为中国的AI发展贡献了重要力量。
图 科大讯飞大模型年内重要里程碑
来源:资产信息网 千际投行 iFinD
这些企业的活动不仅推动了中国大模型行业的技术进步,也为全球AI技术的发展趋势提供了重要参考。随着技术的进一步发展和应用的深入,预计这些企业将继续在全球AI领域发挥领军作用。
3.6 全球重要参与企业
在全球大模型行业,OpenAI、谷歌、微软、谷歌、英伟达、英特尔、Meta等重要的参与企业正在推动该领域的发展与革新,包括大模型、AI视频、AI图像、AI数字人、AI搜索、AI语音、AI音乐、AI3D、AI设计等。OpenAI、谷歌和Anthropic是其中的佼佼者,他们的技术进展和市场活动为整个行业设定了高标准。
表 主要非中国AI大模型列表
来源:资产信息网 千际投行收集整理
OpenAI 自成立以来,就致力于开发和推广安全通用人工智能(AGI)。其核心产品包括各种开源工具和高级AI模型,如GPT系列。OpenAI的转型从非营利组织到营利性公司标志着其对资金和资源需求的增长,以及对商业化策略的调整。与微软的合作使得该公司在AI超算技术上取得了重大进展。2022年发布的ChatGPT和2024年推出的Sora视频大模型,都极大地推动了AI在内容生成和对话交互领域的应用,使得OpenAI的市场估值和影响力大幅提升。
图 OpenAI大模型发展历程
来源:资产信息网 千际投行 iFinD
谷歌在大模型技术方面也不甘落后。其PaLM 2 AI模型是行业内的佼佼者,专注于常识推理、形式逻辑、数学问题解决以及多语言处理。谷歌的技术实力在处理大规模参数和多种语言的模型训练上表现卓越,其模型的响应速度和处理能力在行业内居于领先地位。这些技术优势使得谷歌在AI研究和应用领域持续保持竞争力。
图 Google PaLM2大模型示意图
来源:资产信息网 千际投行 iFinD
Anthropic,由前OpenAI员工创立,专注于构建有用、诚实和无害的AI系统。Anthropic的Claude模型在多个AI基准测试中显示出优异的性能,特别是在语言理解和生成方面。该公司的创新不仅在技术层面,还在于推动AI的伦理和安全标准,这使其在AI社区中获得了独特的地位。
这些公司的活动不仅推动了大模型技术的进步,也对全球经济和社会的多个领域产生了深远影响。从提高生产效率到改善用户体验,再到引发下一轮工业革命,大模型行业的未来充满了既有挑战也有机遇。随着技术的进一步成熟和市场的扩展,预计这些企业将继续在智能化浪潮中扮演关键角色。
第四章 未来展望
大模型行业正迅速成为技术发展的前沿阵地,其未来展望可谓光明而充满挑战。从人机交互的自然化到智能基础建设的大规模投资,再到AI芯片成本的下降,各种因素共同推动了这一行业的飞速进步。
首先,人机交互界面的进化是推动大模型行业发展的核心动力。从初期的命令行界面(CLI)到图形界面(GUI),再到现在的对话式交互界面(CUI)和多模态交互方式,技术的进步显著提高了机器的用户友好度和效率。这种以自然语言进行的交互不仅使机器更加“拟人化”,还极大地降低了公众对AI工具的使用门槛,从而激发了市场对AI技术的需求。
在技术供给侧,大模型的发展趋势是向多模态转变。这种转变不仅降低了生产成本,也显著提升了市场的活跃度和应用的广度。随着AI模型与新一代硬件如机器人、AR眼镜等的融合,预示着下一轮工业革命的到来。人们预期,基于大模型的智能体将变成人类的“生产力遥控器”,在人机协同模式下,极大地提升生产资料的操作效率和范围。
另外,智能基础设施的建设也是大模型行业发展的关键。随着AI芯片价格的预期下降,将进一步加速大模型的产能扩张。低成本的计算力将使AI服务回归到更广泛的社会公共服务领域,提高其普及率和应用深度。同时,智能基础设施的投资正在不断增加,其在经济中的“资本密度”、“算力密度”和“数据密度”也在持续提升,这将为中国乃至全球经济的比较优势增添新的动力。
此外,大型语言模型在知识传播和学习速度上的显著优势,预计将进一步推动全球知识的跨语言、跨学科和跨时空传播。这种高效的知识流通能力不仅加速科学研究和技术创新,也为教育和培训带来了革命性的变革。
千际投行认为,大模型行业的未来将是一个多元化发展的时代。技术创新与应用需求的相互促进,将使这一行业在未来几年内持续保持快速增长,成为推动社会进步和经济发展的重要力量。
作者:千际投行
封面:AI 生成
原文标题 : 2024年大模型行业研究报告
最新活动更多
-
即日-11.13立即报名>>> 【在线会议】多物理场仿真助跑新能源汽车
-
11月28日立即报名>>> 2024工程师系列—工业电子技术在线会议
-
12月19日立即报名>> 【线下会议】OFweek 2024(第九届)物联网产业大会
-
即日-12.26火热报名中>> OFweek2024中国智造CIO在线峰会
-
即日-2025.8.1立即下载>> 《2024智能制造产业高端化、智能化、绿色化发展蓝皮书》
-
精彩回顾立即查看>> 【限时免费下载】TE暖通空调系统高效可靠的组件解决方案
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论