汽车传感器融合系统浅析
自动驾驶离不开感知层、控制层和执行层的相互配合。摄像头、雷达等传感器获取图像、距离、速度等信息,扮演眼睛、耳朵的角色。
控制模块分析处理信息,并进行判断、下达指令,扮演大脑的角色。车身各部件负责执行指令,扮演手脚的角色。而环境感知是这一切的基础, 因此传感器对于自动驾驶不可或缺。
三大重要传感器
摄像头:智能驾驶之慧眼
车载摄像头是实现众多预警、识别类 ADAS 功能的基础。在众多 ADAS 功能中,视觉影像处理系统较为基础,对于驾驶者也更为直观,而摄像头又是视觉影像处理系统的基础, 因此车载摄像头对于自动驾驶必不可少。
摄像头可实现的 ADAS 功能
以上众多功能都可借助摄像头实现,有的功能甚至只能通过摄像头实现。
车载摄像头价格持续走低,未来单车多摄像头将成为趋势。摄像头成本相对低廉,价格也从 2010 年的 300 多元持续走低,到 2014 年单个摄像头价格已降低至 200 元左右,易于普及应用。
根据不同 ADAS 功能的要求,摄像头的安装位置也不尽相同。按摄像头的安装位置不同,可分为前视、侧视、后视和内置四个部分。未来要实现全套 ADAS 功能,单车需配备至少 5 个摄像头。
前视摄像头
前视摄像头使用频率最高,单一摄像头可实现多重功能。如行车记录、车道偏离预警、前向碰撞预警、行人识别等。前视摄像头一般为广角镜头,安装在车内后视镜上或者前挡风玻璃上较高的位置,以实现较远的有效距离。
侧视摄像头代替后视镜将成为趋势。由于后视镜的范围有限,当另一辆在斜后方的车位于这个范围之外就“隐身”,因为盲区的存在,大大增加了交通事故发生的几率。而在车辆两侧加装侧视摄像头可以基本覆盖盲区,当有车辆进入盲区时,就有自动提醒驾驶员注意。
全景泊车系统
全景泊车系统通过安装在车身周围的多个超广角摄像头,同时采集车辆四周的影像,经过图像处理单元矫正和拼接之后,形成一副车辆四周的全景俯视图,实时传送至中控台的显示设备上。
驾驶员坐在车中即可以“上帝视角”直观地看到车辆所处的位置以及车辆周报的障碍物。
车载摄像头应用广泛且价格相对低廉,是最基本最常见的传感器。相对于手机摄像头,车载摄像头的工况更加恶劣,需要满足抗震、防磁、防水、耐高温等各种苛刻要求。制造工艺流程复杂,技术难度高。
特别是用于ADAS功能的前视摄像头,涉及行车安全,可靠性必须非常高。因此车载摄像头的制造工艺也更加复杂。
车载摄像头产业链
在成为整车厂商的一级供应商之前,需经过大量不同种类的严格测试。但是一旦进入整车厂商的一级供应商体系就会形成很高的壁垒,很难被替代,因为更换供应商的成本太高,重新更换供应商就意味着整车厂商要再次进行复杂的测试。
全球视觉系ADAS龙头Mobileye从1999年成立就开始研发视觉处理系统,但在2007年搭载Mobileye产品的车型才上市,从研发到正式进入前装市场,用了八年的时间。但成为众多整车厂商的一级供应商后,Mobileye已成为这一领域绝对的寡头。
自从其公司2014年上市至今,与其他公司竞逐各大汽车厂商的智能汽车安全设备招标时,Mobileye的成功率几乎是百分之百。
毫米波雷达:ADAS 核心传感器
毫米波的波长介于厘米波和光波之间, 因此毫米波兼有微波制导和光电制导的优点:
1)同厘米波导引头相比,毫米波导引头具 有体积小、质量轻和空间分辨率高的特点;
2)与红外、激光等光学导引头相比,毫米波导引头穿透雾、烟、灰尘的能力强,传输距离远,具有全天候全天时的特点;
3)性能稳定,不受目标物体形状、颜色等干扰。毫米波雷达很好的弥补了如红外、激光、超声波、 摄像头等其他传感器在车载应用中所不具备的使用场景。
毫米波雷达的探测距离一 般在 150m-250m 之间,有的高性能毫米波雷达探测距离甚至能达到 300m,可以满足汽车在高速运动时探测较大范围的需求。与此同时,毫米波雷达的探测精度较高。
毫米波雷达应用于自适应巡航
这些特性使得毫米波雷达能够监测到大范围内车辆的运行情况,同时对于前方车辆的速度、加速度、距离等信息的探测也更加精准,因此是自适应巡航(ACC)、自动紧急刹车(AEB) 的首选传感器。
目前 77GHz 毫米波雷达系统单价大约在 250 欧元左右,高昂的价格限制了毫米波雷达的车载化应用。
激光雷达:功能强大
激光雷达性能精良,是无人驾驶的最佳技术路线。激光雷达相对于其他自动驾驶传感器具有非常优越的性能:
分辨率高。激光雷达可以获得极高的角度、距离和速度分辨率,这意味着激光雷达可以利用多普勒成像技术获得非常清晰的图像。
精度高。激光直线传播、方向性好、光束非常窄,弥散性非常低,因此激光雷达的精度很高。
抗有源干扰能力强。与微波、毫米波雷达易受自然界广泛存在的电磁波影响的情况不同,自然界中能对激光雷达起干扰作用的信号源不多,因此激光雷达抗有源干扰的能力很强。
激光雷达的空间建模
三维激光雷达一般安装在车顶, 可以高速旋转,以获得周围空间的点云数据,从而实时绘制出车辆周边的三维空间地图。同时,激光雷达还可以测量出周边其他车辆在三个方向上的距离、速度、加速度、角速度等信息,再结合 GPS 地图计算出车辆的位置,这些庞大丰富的数据信息传输给 ECU 分析处理后,以供车辆快速做出判断。
激光雷达车用方案:
以地图为中心:以 Google 和百度为代表的互联网企业的无人驾驶是以地图为中心, 主要原因在于激光雷达可以为这些公司绘制高精度地图。
以汽车为中心:对大多数车企而言,他们更想要一款专为汽车量身定制的激光雷达产品。
百度自动驾驶汽车上的激光雷达
首先,和测绘专用的笨重“大花盆”相比,小型激光雷达和汽车更配,为了兼顾美观和风阻系数,自动驾驶汽车与普通汽车不应该在外观上有任何差别,激光雷达尽量要被做成小体积直接嵌入车身,这就意味着要将机械旋转部件做到最小甚至抛弃。
因此车用激光雷达没有选用大体积旋转结构,而是在制作工艺上,将旋转部件做到了产品内部。例如 Ibeo 的激光雷达产品 LUX,改为固定激光光源,通过内部玻璃片旋 转的方式改变激光光束方向,实现多角度检测的需要。
而Quanergy 旗下产品 S3 是一款全固态产品,使用了相位矩阵新技术,内部不存在任何旋转部件。
不过,好东西都很贵。激光雷达单价以万为单位,高昂的价格让其难以市场化。
图片新闻
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论