侵权投诉
订阅
纠错
加入自媒体

Waymo首席科学家在MIT自动驾驶课上开讲:如何解决自动驾驶的长期挑战

2019-02-27 09:43
智车科技IV
关注

那我们如何来预判呢?

预测的影响因素有过去的动作、高度的场景语义、物体属性和出现提示。我们考虑周围的任何事物,比如有一个自行车想要通过,那么我们需要停下或者放慢速度让它通过,这就需要提前计划设计,做出安全的解决方案。同时,我们也要向周围的人和物发出信号。

学校周围的场景,这是一个非常复杂的问题。机器学习是一个非常好的工具用以应对复杂的情况。所以我们要学习出一个系统,以此优化现实存在的各种场景问题。

传统的学习模式:用工具构建,改造和进化难以实现。

机器学习:更像是一个工厂,我们仅仅需要把数据输入进去,就能得到正确的模型。

关于如何创建更智能的机器学习模型的周期如图中所示。

因为Waymo隶属于Google,有用强大的数据中心,所以他们用TensorFlow和TPU,做出准确的标注,而且分布均匀。

数据收集:这是一个非常重要的环节,这是解决“长尾巴情况”的重要因素。数据收集是激发主动学习的重要环节,也是是机器学习周期运行良好的重要基础。

Google AI和DeepMind都在关注自动驾驶。机器学习自动化已经部署好,几乎所有的事情都接近自动化。

NAS cell是一种小网络,反复用作构建神经网络体系结构的高级构件。

首先是用NAS cell进行激光雷达分割。在这一过程中,延迟也很重要。

稳定平衡的体系结构本身也可以自动化,这是很灵捷并且很强大的。

这条蓝色的线,延迟最小且分割情况最好。

解决机器学习限制问题。但是在某些情况下还是存在限制,需要我们增强鲁棒性。

这幅图片描述的问题是存在冗余和互补的传感器和传统的逻辑。

混合系统:这是将传统AI和机器学习相结合的系统,这样可以保证系统鲁棒性,保证自动驾驶安全性。

随着时间的推移,如上图机器学习的范围可能会扩大,甚至完全掌控。


<上一页  1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号