使用相机和深度学习制作伪LiDAR
1.监督深度估计
“监督”深度学习背后的概念很简单,收集RGB图像及其相应的深度图,训练类似于“自动编码器”的体系结构进行深度估计。(尽管训练起来不那么简单,但如果不通过训练过程整合一些特殊技巧,FCN就永远无法真正发挥作用:)。
尽管此方法更易于掌握,但在现实生活中收集深度图是一项昂贵的任务。LiDAR数据可用于训练这类网络,因此,如果我们对由LiDAR收集的数据进行训练,则神经网络的性能将明显优于LiDAR,但仍然可以,因为我们不需要那种级别的准确性来驾驶汽车例如,知道树上是否有叶子的确切距离。
2.无监督深度估计
仅在一系列环境中记录质量深度数据是一个具有挑战性的问题。无监督方法可以在没有地面真实深度图的情况下学习深度!
“这种方法只是查看未标记的视频,并找到一种方法来创建深度图,方法不是尝试正确,而是尝试保持一致。”
3.神经网络架构
该网络具有类似于U-Net的架构,编码器部分是在ImageNet数据集上训练的预训练DenseNet模型。解码器部分使用双线性上采样而不是简单的上采样。
简而言之,我们使用双线性上采样是因为它在上采样后会整体上产生“平滑”图像。输出是深度图,深度图是图像大小的一半,这有助于网络学习更快。
4.图像增强
对于图像增强,可以使用以下技术:图像翻转,输入图像的色彩通道改组,向输入图像添加噪点,增加输入图像的对比度,亮度,温度等。这样可以确保模型在整个训练过程中始终看到新数据,并更好地泛化未见数据。
目前,深度估计在AR / VR中已经得到了许多应用。
图片新闻
最新活动更多
-
1月10日立预约直播>> 【线上直播】新能源汽车热管理行业应用新进展
-
精彩回顾立即查看>> 【线下会议】OFweek 2024(第九届)物联网产业大会
-
精彩回顾立即查看>> 【线下论坛】华邦电子与莱迪思联合技术论坛
-
精彩回顾立即查看>> 【线下论坛】华邦电子与恩智浦联合技术论坛
-
精彩回顾立即查看>> 蔡司新能源汽车三电质量解决方案
-
精彩回顾立即查看>> 蔡司新能源汽车三电质量解决方案
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论