AI如何创建自动驾驶数据中心?
人工智能与安全
Bizo认为,人工智能和机器学习“可以通过对事件进行快速分类和聚类来简化事件处理(事件响应),从而识别出重要事件并将其与噪声分离开来。更快的根本原因分析有助于操作员做出明智的决定并采取行动。”
人工智能在实时入侵检测中特别有用,Schulz补充道。基于人工智能的系统可以检测、阻止和隔离威胁,然后可以回去进行法医调查,以确定到底发生了什么,黑客能够利用哪些漏洞。
在安全操作中心(SOC)工作的安全专业人员经常会收到过多的警报,但基于人工智能的系统可以扫描大量的遥测数据和日志信息,从而清除日常任务,从而使安全专家能够腾出时间来处理更深层次的调查。
基于人工智能的工作负载优化
在应用程序层,AI有可能自动将工作负载移动到适当的着陆点,无论是在内部部署还是在云端。”AI/ML将来应该根据性能、成本、治理、安全、风险和可持续性的众多规范,实时决定在哪里放置工作负载。
例如,工作负载可以自动移动到最省电的服务器,同时确保服务器以最高效率运行,即70-80%的利用率。Bizo说,人工智能系统可以将性能数据整合到等式中,因此对时间敏感的应用程序在高效服务器上运行,同时确保不需要快速执行的应用程序不会消耗过多的能量。
基于人工智能的工作负载优化引起了麻省理工学院研究人员的注意,他们去年宣布他们开发了一个人工智能系统,可以自动学习如何在数千台服务器上调度数据处理操作。
但是,正如Bushong所指出的,现实情况是,如今的工作负载优化是像亚马逊、谷歌和Azure这样的超大规模公司的专利,而不是一般的企业数据中心。原因有很多。
实施人工智能的挑战
优化和自动化数据中心是正在进行的数字化改造计划的一个组成部分。戴尔的Tabet补充道,“借助COVID-19,许多公司现在都在寻求进一步的自动化,推动人工智能驱动、能够自我修复的‘数字数据中心’的理念。”
谷歌在2018年宣布,已将其数个超规模数据中心的冷却系统控制权转为人工智能程序,该公司报告称,人工智能算法提供的建议使能源使用量减少了40%。
但是,Bizo说,对于那些名字不是谷歌的公司来说,在数据中心使用人工智能“在很大程度上是一种理想”。一些AI/ML特性在事件处理、基础设施运行状况和冷却优化中可用。但是,AI/ML模型要取得比目前标准数据中心基础设施管理(DCIM)更明显的突破还需要更多年的时间。与自主汽车开发非常相似,早期阶段可能很有趣,但与它最终承诺的突破性经济/商业案例相去甚远。”
Tabet认为,一些障碍是“需要雇佣或培训合适的人员来管理系统。另一个需要注意的问题是数据标准和相关体系结构的需要。”
Gartner这样说:“AIOps平台成熟度、it技能和运营成熟度是主要的阻碍因素。高级部署面临的其他新挑战包括数据质量和“IT基础设施和运营团队”缺乏数据科学技能。
Bushong补充说,最大的障碍一直是人。他指出,外雇数据科学家对许多企业来说是一个挑战,对现有员工的培训也是一个障碍。
另外,Bushong说,员工抵制技术的历史由来已久。他指出,软件定义网络(SDN)已经存在了十年,但仍有四分之三以上的IT运营仍由CLI驱动。
“我们必须相信,各种基础设施的运营商准备把控制权让给人工智能,”Bushong表示。“如果一群人还不相信空管员能做出决定,那么你怎么训练、教育和安慰一群人,让他们做出如此重大的转变呢?业内普遍的态度是,如果我这么做,我就会失业。”
这就是为什么Bushong建议企业在人工智能方面采取那些小而乏味的步骤,而不是陷入经常围绕一项新技术的炒作中。(编译/Cassie)
* 千家网原创文章,转载请注明作者及出处。
编辑:Y来源:千家网
图片新闻
最新活动更多
-
12月19日立即报名>> 【线下会议】OFweek 2024(第九届)物联网产业大会
-
精彩回顾立即查看>> 【线下论坛】华邦电子与莱迪思联合技术论坛
-
精彩回顾立即查看>> 【线下论坛】华邦电子与恩智浦联合技术论坛
-
精彩回顾立即查看>> 蔡司新能源汽车三电质量解决方案
-
精彩回顾立即查看>> 蔡司新能源汽车三电质量解决方案
-
精彩回顾立即查看>> 2024(第五届)全球数字经济产业大会暨展览会
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论