侵权投诉
订阅
纠错
加入自媒体

黑客攻克自动驾驶汽车的途径、方式及危害

2021-03-21 11:04
智车科技IV
关注


黑客攻击可能的具体方式

基于文献中讨论的不同攻击模式,识别出了针对自动驾驶车辆的四种可能的黑客攻击方式。考虑到这些系统的进化特性以及黑客对这些变化的适应性,很难明确所有可能的攻击。

自动驾驶车辆组件

1) 禁用攻击各种文献中讨论了多种攻击方式,如关闭发动机、重新配置发动机气缸的点火正时以干扰其工作、不断启动点火锁等。所有这些攻击都会禁用一个或多个AV系统。攻击造成的实际损害取决于其发生的时点。如果在一辆车停在车位的时候关闭了点火开关,除了司机感到不方便之外,对任何人来说都不是问题。如果汽车在攻击发生时正在市内导航行驶,那么潜在的危害性就会增加。这种可变性说明了在评估被黑客攻击的AV的影响时需要探索场景范围。

2) 过度提供服务攻击过度提供服务攻击采取与禁用攻击相反的方法,它使AV提供服务或在没有要求服务或任何行动需要时采取行动。此类攻击的例子包括超速、制动或不制动、转向或不转向。类似与这种攻击的一个例子是对网站的拒绝服务攻击。在这种攻击中,数以百万计的服务请求被发送到服务器,目的是使该服务器超负荷,使其无法响应任何请求。这些攻击造成的损害也取决于时间和地点。

3) 数据操纵攻击数据操纵攻击是将受损的数据提供给AV组件的攻击。这可能导致组件、AV在实际需要操作时不采取任何操作,或在不需要操作时采取操作。例如攻击者可以破坏AV的激光雷达单元,并有选择地擦除数据,从而使AV被欺骗,认为其行进路径中没有障碍物,这可能会导致车辆无法刹车或转向以避免撞上障碍物。对数据的操作可以采取选择性地删除、破坏或错误地增加数据的形式。同样地,数据中毒(data poisoning)能够以微妙的方式篡改训练数据甚至物理信号,可能会更隐蔽地带来风险。

4) 盗窃数据窃取有关用户旅行模式的数据、使用座舱麦克风窃听用户的对话以及类似的攻击都可以归为这类攻击。然而,自动驾驶车辆本身并不是黑客唯一的攻击对象,AV制造商、组件制造商、保险公司或交通管理部门的数据中心都可能会遭到破坏,有关AVs运行的所有信息都可能被盗。在大多数情况下,这类攻击会导致隐私丢失。例如,当Target和Equifax遭到黑客攻击时,所有信用卡信息都被泄露,其结果就是客户隐私的巨大损失。攻击者可能会以AVs连接的服务器为目标。
在许多情况下,汽车制造商将使用第三方云提供商来托管相关软件和数据。这些第三方将成为利益相关者和潜在被告。

针对自动驾驶车辆的网络攻击

一些研究探索了对此类系统的潜在网络攻击,并提供了成功攻击AVs组件的概念性证明,为深入了解AVs可能遭受的网络攻击提供了一个框架。

这个讨论区分了被动攻击和主动攻击。被动攻击是指车辆被骗做出错误决定的行为。主动攻击是指车辆被明确指示或被迫做出错误决定的攻击。  

1. 主动攻击

Koscher等人(2010年)对当代汽车的网络安全进行了实验分析。尽管他们的研究并不是针对AVs的安全性,但他们的实验结果仍然与AVs高度相关,因为分析的许多部件在大多数当代车辆上都是通用的,包括自动驾驶车辆。通过实验室实验和道路测试,作者证明了黑客有能力渗透到车辆的任何ECU(电子控制单元)中,可以绕过关键安全系统来控制车辆的许多功能。所有进行的实验都假定攻击者已经利用漏洞进入车辆部件。

Koscher等成功证明了针对几个重要ECU的攻击类型,包括对车身控制模块(BCM)、发动机控制模块、负责控制车辆防抱死制动系统(ABS)电子制动控制模块(EBCM)的攻击等。

一般来说,还可利用逆向工程技术对其他模块进行了攻击。研究人员指出,对这些模块进行逆向工程以找出要发送的指令和要处理的数据,从而实现成功的攻击,是非常容易的,尽管这些攻击需要比讨论的其他攻击更复杂的技术。

示例:对车身控制模块的攻击

车身控制模块(BCM)属于ECU,负责控制构成车身的各种自动部件的功能。电动车窗、电动门锁、挡风玻璃雨刮器、后备箱、制动灯等部件的功能都由车身控制模块控制。表A.1显示了车身控制模块上演示的不同类型的攻击。

 

2. 被动攻击

Petit和Shladover(2015)提供了一份关于AVs的合理网络攻击的清单。使用类似于工程设计中的失效模式分析方法,检核了AV的重要组成部分(以及它们在生态系统中相互作用的其他组成部分),以评估一些看似有可能的网络漏洞。下表描述了分析中发现的攻击类型、可能的后果、后果的严重程度等。

这些攻击本质上大多是被动的(让车辆做出错误的决定或诱使车辆做出错误的决定),而不是Koscher等人描述的主动攻击(指挥或强迫车辆做出错误的决定)。交通基础设施可能被利用,基础设施提供给车辆的数据可能被操纵,以使AVs采取通常不会采取的行动。尽管这些攻击对象不是车辆本身,但这是一类重要的攻击,如果攻击成功,可能会使法律责任分析复杂化。电子元件上的致盲和欺骗攻击很常见,当这些攻击在AVs上进行时,可能会导致撞车,而不仅仅是违反交通法规。对全球定位系统的攻击也是如此。另一类重要的攻击是数据盗窃,这可能导致拥有或使用AV的个人失去隐私,这种攻击可以通过窃取车载设备捕获的数据来实现。

对自动驾驶车辆组件及其他交通基础设施的攻击  

各种黑客攻击行为的影响

自动驾驶车辆黑客行为及后果列表补充了前面的讨论,说明了对AV各种组件的攻击会如何影响汽车性能或功能。包括对发动机、传动系、制动系、转向系、动力、安全、稳定性、车身等车辆组件的控制,以及对导航、激光雷达、摄像头、V2V/V2I通讯、OTA升级、OBD等的操作及数据窃取等。

我们已经确定了黑客控制自动驾驶车辆的可能性,并初步讨论了由此造成的物理和经济损失的可能性。这种危害会对AVs制造商、所有者和运营商的责任造成影响。

自动驾驶车辆黑客行为及后果列表

小结

本文对自动驾驶车辆的网络安全问题的可能性、攻击车辆的主要途径和具体方式、攻击后果的影响等进行了初步的概念性讨论,希望能够引起自动驾驶技术公司及车辆OEM厂商的重视,从而推动自动驾驶车辆技术及产品的开发和应用。

参考文献:When Autonomous Vehicles Are Hacked, Who Is Liable, RAND Corporation.

<上一页  1  2  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号