氢能源究竟是风口还是陷阱?氢能汽车能否实现深度脱碳目标?
05 氢能汽车的心脏
氢燃料电池可以被广泛的应用于各个场景中,主要的应用可以被分为3类:交通、固定电源及便携式电源。
氢能未来最重要的应用场景在交通运输领域,与燃料电池车相比,纯电动车的开发和应用在大多数场景中更加成熟,但由于电池重量和续航里程问题而受到限制。
燃料电池车与其他车辆的主要区别在于动力系统。所有其他零部件本质上是相似的。
燃料电池车和纯电动车通过电动机将电能转化为动能,而汽油和柴油车在内燃机中将燃料燃烧产生的热能转化为动能。
燃料电池车和纯电动汽车的主要区别在于电的来源。与燃料电池车不同的是,纯电动汽车的全部能量来自其电池组,电池组在充电站进行外部充电。
氢气作为汽车燃料为车辆功能,其原理已经有很长的历史了。
在200年前,氢气就被用在第一代内燃机中作为燃料,与现在内燃机里汽油等燃料工作原理类似。但是因为安全性及能量密度较低,氢气作为内燃机燃料并没有表现出优越性。
然而,在如今的燃料电池技术中,氢气并不直接燃烧,而是和氧气反应转换为电能。
氢能源车以氢燃料电池作为能量来源。在氢燃料电池中,氢气由电池阳极输入,在催化剂(铂)的作用下分解为电子和氢离子(质子)。
其中质子通过质子交换膜到达负极,与阴极输入的氧气反应生成水;而电子则被质子交换膜阻隔,经由外电路流向阴极,产生电能为汽车供能。
氢燃料电池汽车主要由高压储氢罐、燃料电池堆栈、燃料电池升压器、动力电池、驱动电机和动力控制单元等组成。
氢能的发展路径和锂电极为相似,中游电池系统成本占据整车接近30%。
细剖起来,燃料电池系统由电池堆和支持系统两部分构成,前者是核心动力组件,后者由空气压缩机、加湿器、燃料回路、空气回路等支持组件构成。
电堆占据一半以上燃料成本。
电池堆是电池单元串联叠加而成,由于每个单元产生的电压通常不到 1 伏特,因此往往需要几百片电池单元进行串联。
市场上有 5 种类型的氢燃料电池单元技术方案,其中最适合车用的是质子交换膜燃料电池。
其中,膜电极是氢燃料电池的核心部件,在燃料电池电堆中承担了核心的电化学反应功能,其成本占据电堆总成本的60% 以上,被誉为燃料电池的芯片。
膜电极的技术和生产不仅决定了电堆的使用条件和寿命,同时也决定了电堆的成本和氢燃料电池的推广使用。
膜电极的研发和生产是一个集合了电化学、高分子材料化学、无机材料化学、精密涂布技术、自动连续化工业控制和功能寿命测试的产业,流程周期长、投入大。
目前的前沿技术主要由国外大企业掌握,以丰田、巴拉德和Hydrogenics为典型,研发历史悠久,其中巴拉德对膜电极的研发已超过40年。
国内虽有部分企业和机构突破技术难题,但由于成本问题难以形成规模化生产,因此国内还没有公司具备膜电极的大规模连续化生产的能力,产业化基础非常薄弱。
那么产业基础如何夯实,成本如何下降?这其中的关键,在于规模制造。
根据 Strategic Analysis Inc 测算,以丰田氢燃料电池车 Mirai 为例,在年产 1000 台时燃料电池(FC)系统与储氢系统制造成本分别为 20180 美元和 8002 美元,占整车成本分别为 30.7%和 12.2%;
当年产量增至 3000台时,燃料电池系统与储氢系统制造成本分别为 15821 美元和 6040 美元,占整车成本比例降至 28.2%和 10.7%;
可以明显看出来,在规模制造下,二者成本有了明显的下降。但是传统燃油车发动机占整车成本比例仅为15%,燃料电池系统与储氢系统合计成本约为占整车的 40%,显著高于传统燃油车。
如何进一步降低储氢和燃料电池系统的成本,尤其是后者是氢燃料车大规模商业化的前提,更大规模的制造和技术精进有望进一步降本。
如何实现规模制造?它的背后,在于需求上量。
根据我国《节能与新能源汽车技术路线图》中对燃料电池汽车总体技术路线的规划:
2020年,计划实现燃料电池汽车在特定地区公共服务用车领域的小规模示范应用,达到5000辆规模;
2025年在城市私人用车、公共服务用车领域实现大批量应用,达到5万辆规模;
2030年在私人乘用车、大型商用车领域实现大规模商用化推广,达到百万辆规模。
在需求的推动下,商用燃料电池系统与储氢系统价格较去年已经有了较大幅度的下降,目前行业水准不到1万元/KW,车用储氢系统价格不到5000元/KG,未来随着氢燃料电池应用范围与规模扩大,商用燃料电池价格至2025/2035/2050有望降至3500/1000/500元KW。商用储氢系统价格有望降至3500/2000/1200元/KG。
成本的下降带来下游需求的爆发,预计21/25/35/50年燃料电池汽车空间规模将达到165/869/3850/9900亿元。
此外,近期我国鼓励发展氢内燃机,潍柴动力等企业多年已经布局,一汽集团在该领域取得了突破式进展。技术的竞争与落地实验,将极大地促进行业的发展。
06 补锂不足,减排关键
围绕氢燃料电池汽车与纯电动车的争论已经存在数十年,且随着全球各大整车厂商将电动化发展重心转向纯电动汽车,是否应该发展氢燃料电池汽车的质疑声也越来越大,相比较纯电动汽车而言,氢燃料电池汽车发展缓慢的原因主要有以下几点:
(1)氢燃料电池汽车购车成本远高于纯电动汽车,是纯电动汽车 1.5-2 倍;
(2)初始加氢成本高,当前加氢站加氢成本在 50-80 元/kg;
(3)加氢站等基础设施匮乏。与密集的加油站及充电桩相比,现有加氢站数量明显不足。
为使氢燃料电池汽车具备与燃油车相近的燃油经济性,其终端加氢成本需至少降到 40 元/kg 以内,假设以当前储运及加注成本计算(25 元/kg),制氢成本至少需降到 15 元/kg以下。
那么如此来看,氢能源不具备经济性,那么大力推广的因素是什么呢?
由于锂电池本身的电能充放特点,纯电动汽车适合于较短距离行驶的小型和轻型车辆。但锂电池相对氢燃料电池能量密度较低,在商用车领域采用锂电设备,将提高车辆自重,降低重卡等重型商用车长途运输的经济适用性。
以49吨重的锂电重卡和氢能重卡对比,需要锂电池重量为17.86KG,氢燃料仅需要12KG,显然车辆自重层面燃料电池优势突出,有效载荷优于锂电车型。
氢燃料电池车更适用于重型商用车领域。一方面可以补齐锂电池的不足,另一方面可以实现深度脱碳。
商用车排放占比高,是交运领域重要的减排对象。在碳排放(CO、HC)以及污染物排放(NOx、PM)中,由于发动机结构与燃烧方式的不同,商用车(绝大多数搭载柴油机)的碳排放水平明显高于乘用车,合计占比达到 77.3%,是交运领域碳排放首要减排对象。
从我国汽柴油表观消费量以及 CO2 排放情况来看,我国的交运行业减排工作已取得明显进展,但碳排放水平依然处于较高位置,仅靠节能减排或者尾气回收显然无法完成碳中和目标。
此外,续航和充电时长方面也会限制重型商用车的运输效率。
相比之下,燃料电池车能量密度高,加注燃料便捷、续航里程较高,低温环境表现优异,更加适用于长途、大型、商用车领域,未来有望与纯电动汽车形成互补并存的格局。
根据规划,到 2035 年我国氢燃料电池车保有量将达 100 万辆。根据《节能与新能源汽车技术路线图 2.0》规划,我国将发展氢燃料电池商用车作为整个氢能燃料电池行业的突破口。
以客车和城市物流车为切入领域,重点在可再生能源制氢和工业副产氢丰富的区域推广中大型客车、物流车,逐步推广至载重量大、长距离的中重卡、牵引车、港口拖车及乘用车等。
到 2035 年,实现氢燃料电池汽车的大规模推广应用,燃料电池汽车保有量达到 100 万辆左右,完全掌握燃料电池核心关键技术,建立完备的燃料电池材料、部件、系统的制造与生产产业链。
除了公路运输之外,更长远来看,氢气还有可能促进铁路运输、船运和航空领域的脱碳化:
在确定了氢能源为未来发展路径后,氢燃料电池的成本是决定何时大规模商用的关键,现阶段,氢能源应用主要依赖于财政补贴和政策支持。在未来,随着规模的扩大和全产业链技术的进一步成熟,市场化进程有望加快,下游应用领域将迎来爆发阶段。
最新活动更多
-
即日-1.25立即下载>> PV Inverter太阳能逆变器主要部件应用指南
-
2025年3月立即报名>>> 【线下会议】OFweek 2025 工商业储能大会
-
2025年3月立即报名>>> 【线下会议】OFweek 2025(第五届)储能技术与应用高峰论坛
-
2025年3月立即报名>> OFweek 2025新能源产业协同发展大会
-
即日-3.31立即查看>> 蔡司工业质量解决方案集锦
-
7.30-8.1预约参观>> 【展会&大会】2025全数会-光伏储能工业应用大会暨展览会
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论