人工智能如何让老药重新达到新高度?
一定程度上说,这些研究确实为我们带来了无上的瑰宝。例如遗传学家Nancy Wexler博士通过研究委内瑞拉亨廷顿病患者的家族史,最终发现了在单个基因上的突变能够预测一个人会不会得上这一疾病。
然而,科学家们很快发现基因与疾病之间的联系并不总是那么简单,像癌症和阿兹海默病这样的复杂疾病并不是因为一个基因的突变而产生。如今,Cohen博士和其它有识之士认为“化繁为简”的科研方式与药物开发的效率下降之间有着重要的联系。这种效率下降导致一款新疗法获得FDA批准的成功率只有10%,而且药物开发成本迅速上升。
▲Albert-László Barabási博士(图片来源:Albert-lászló barabási博士实验室官网)
近年来,科学家们开始在网络理论的帮助下开始解决生物复杂性的问题。网络理论的著名科学家,东北大学(Northeastern University)的Albert-László Barabási博士认为,疾病就像一个坏信号通过网络从基因传播到蛋白,再传播到细胞和组织,直到所有对网络的扰乱最终表现为我们通常熟悉的疾病症状。
复杂疾病是无数种影响的综合结果,因为基因多效性意味着任何蛋白可能在身体的不同部位发挥作用。像Pharnext这样的初创公司假设药物也可以具有多效性,它们可以与多种蛋白互动,在体内可以产生多种作用。想要发现能够解决复杂疾病的药物组合,我们必须把机器学习从海量数据中发现规律的重要能力,与疾病发生的结构化机制有机地结合在一起。
图片新闻
最新活动更多
-
4日10日立即报名>> OFweek 2025(第十四届)中国机器人产业大会
-
7月30-31日报名参会>>> 全数会2025中国激光产业高质量发展峰会
-
精彩回顾立即查看>> 【上海线下】设计,易如反掌—Creo 11发布巡展
-
精彩回顾立即查看>> 【线下论坛】华邦电子与莱迪思联合技术论坛
-
精彩回顾立即查看>> 【线下论坛】华邦电子与恩智浦联合技术论坛
-
精彩回顾立即查看>> 2024(第五届)全球数字经济产业大会暨展览会
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论