ADC生物偶联技术的最新研究进展
工程化抗体的位点特异性生物偶联
生物正交化学和蛋白质工程领域的进展有助于产生更均匀的ADC。尽管在天然单抗上有许多可用的附着方法可供选择,但在工程化抗体上的位点特异性生物偶联能够更有效地控制DAR,并且避免改变与抗原结合的亲和力。这样,在某些位置加入天然或非天然氨基酸,得到具有优良药代动力学和药效学特征的同质产品。
酶法
有效载荷的附着可以通过在抗体序列中插入特定的氨基酸标签以非常有选择性的方式实现。这些标签被特定的酶所识别,例如甲酰甘氨酸生成酶(FGE)、微生物谷氨酰胺转胺酶(MTG)、转肽酶或酪氨酸酶,从而能够执行位点特异性偶联。
Aaron等人探索了一种新的利用醛标记蛋白质的位点特异性偶联。该技术利用了基因编码的五肽序列(Cys-X-Pro-X-Arg),其中半胱氨酸残基被FGE识别,并在细胞中蛋白质表达期间被共翻译氧化为甲酰甘氨酸。这样,工程化抗体通过HIPS(hydrazino-Pictet–Spengler)化学方法与醛特异性连接子选择性偶联。
微生物转谷氨酰胺酶(MTGase)策略也经常被开发用于定位特异性偶联。MTGase催化在脱糖抗体295位置的谷氨酰胺侧链与底物的伯胺之间形成肽键。与其他酶策略相比,MTG是一种灵活的技术,不需要肽供体来实现偶联。只要酰基受体含有一种伯胺,就没有结构限制。
谷氨酰胺残基自然存在于单抗的每个重链的Fc区域。在295位去糖基化后,谷氨酰胺残基通过MTGase介导的反应偶联,可以产生均一的DAR=2的ADC。为了提高效率,可以偶联带支链的连接子,从而使DAR翻倍,297位的天冬酰胺突变为谷氨酰胺也可增加DAR。
NBE Therapeutics开发了基于S金黄色葡萄球菌转肽酶A介导的偶联。他们的策略利用转肽酶A(SrtA),在LPXTG(X=任何氨基酸)五肽的基序中切割苏氨酸和甘氨酸残基之间的酰胺键。然后,它催化甘氨酸相关的有效载荷与新生成的C-末端的偶联,在生理温度和pH下生成肽键。
该方法应用于不同抗体,如抗CD30和抗Her2,并使用含有5甘氨酸标记的连接子偶联maytansine和MMAE,两种ADC均显示出与经典偶联相似的体外细胞杀伤活性。酶法产生的trastuzumab-maytansine在体内试验中完全匹配Kadcyla。
在另一个例子中,利用转肽酶法生成了高效蒽环素毒素衍生物PNU-159682的ADC。有趣的是,通过这项技术,偶联效率甚至高于Adcetris和Kadcyla类似物。此外,所制备的PNU-159682 ADC具有较高的体外和体内稳定性,并且显示出的效力超过了含有微管蛋白靶向有效载荷的ADC。
另一个新兴的新方法是通过酪氨酸标签进行位点特异性抗体标记,酪氨酸标签与单克隆抗体轻链的C末端基因融合。考虑到位点可及性,Bruins及其同事使用了一种工程化的四甘氨酰酪氨酸残基作为标记,它为偶联提供了一个容易触及的位点。酪氨酸酶将酪氨酸氧化成1,2-醌,从而允许与各种双环[6.1.0]壬炔(BCN)衍生物的环加成反应。这种方法可以与含有BCN连接子的MMAE有效地偶联。
半胱氨酸工程:硫单抗技术
随机半胱氨酸偶联和重桥接是利用抗体结构内天然存在的半胱氨酸残基的技术。然而,随机半胱氨酸方法的异质性以及重桥接策略中的单抗片段化需要在ADC合成中加以考虑,特别是当疏水性药物被偶联时。
与它们不同的是,硫单抗技术通过利用不涉及结构二硫键的工程化反应性半胱氨酸,在抗体上实现所需位点的选择性和均匀修饰。一般来说,半胱氨酸突变的设计是为了促进细胞毒性有效载荷偶联的同时,保持单克隆抗体的稳定性、亲和力和最小化ADC聚集。为了确定突变的最佳位置,通常采用几种技术,包括计算建模、模型系统筛选和高通量扫描。
Junutula等人首先报道了一种硫单抗策略,用工程化半胱氨酸残基取代了抗MUC16抗体重链114位的丙氨酸(HC-A114),工程化位置内的反应性硫醇能够与马来酰亚胺负载的连接子反应。合成的抗MUC16 ADC在异种移植小鼠模型中表现出效力,在大鼠和食蟹猴中表现出高剂量耐受性,这个发现建立了硫单抗偶联策略的一般性方法。
此外,琥珀酰亚胺连接在胞浆内可以经历两个平行反应:反向Michael反应导致连接子-有效载荷的损失,以及琥珀酰亚胺的水解,这两种反应都对体内ADC活性有显著影响。为了提高稳定性,Lyon和合作者设计了一个与马来酰亚胺相邻的碱性氨基整合进来的连接子。在连接子中加入二氨基丙酸(DPR)促进了硫琥珀酰亚胺在中性pH和室温下的快速定量水解,这样,非特异性的去偶联作用被阻止,从而提高了体内的稳定性。除了常用的马来酰亚胺外,还探索了不同的半胱氨酸反应剂,如碘乙酰胺、溴甲酰胺、羰基丙烯酸酯,N-烷基乙烯基吡啶盐。
与工程化非天然氨基酸的生物偶联
除了硫单抗技术外,非标准氨基酸(ncAA)的加入为位点特异性偶联提供了另一种可能性。该技术使用含有独特化学结构的氨基酸,从而能够以化学选择性的方式引入连接子-有效载荷复合物。该技术需要对抗体序列重组,利用与宿主细胞内所有内源性tRNAs和合成酶正交的tRNA和氨基酰tRNA合成酶(aaRS),用于响应未赋值密码子将ncAA带入蛋白质。通常,ncAA在发酵过程中被添加到培养基中。选择非天然氨基酸是很重要的,因为它们可能激发免疫原性。常用的ncAA是具有独特基团的天然氨基酸的类似物,如酮、叠氮、环丙烯或二烯。
已有研究将对乙酰苯丙氨酸(pAcF)成功地整合入抗CXCR4 抗体中。有效载荷Auristin通过肟连接与抗体有效偶联,从而生成化学均一的ADC。该ADC在小鼠体内表现出良好的体外活性和完全清除肺肿瘤的作用。
由于肟连接所需的酸性条件和ADC缓慢释放的动力学,另一种选择是加入含ncAA的叠氮化物。广泛应用的对叠氮哌苯胺(pAzF)可在生理条件下快速进行CuAAC或SPAAC反应,利用这种策略成功地在抗CD74抗体上偶联糖皮质激素有效载荷。除了pAcF技术外,还成功地将含叠氮的赖氨酸类似物(AzK)带入到抗体中,以产生具有Auristin、PBD二聚体或微管蛋白有效载荷的位点特异性ADC。
此外,赖氨酸的环丙烯衍生物(CypK)以及自然发生的非典型氨基酸,如硒代半胱氨酸(Sec)都成功地整合进入抗体中。所产生的ADC表现出良好的稳定性、选择性以及体外和体内活性。
小结
在过去的几年里,ADC的结构优化和机制扩展方面取得了许多进展。新的偶联技术已经被开发出来,以获得对肿瘤的更高选择性。这些偶联技术使ADC具有更好的稳定性、选择性以及体外和体内活性。这些新型偶联技术的初步数据令人鼓舞,未来将极大地促进ADC药物的迅猛发展。
参考文献:
1.The Chemistry Behind ADCs. Pharmaceuticals (Basel). 2021 May; 14(5): 442.
原文标题 : ADC生物偶联技术的最新研究进展
图片新闻
最新活动更多
-
11月29日立即预约>> 【上海线下】设计,易如反掌—Creo 11发布巡展
-
即日-12.26火热报名中>> OFweek2024中国智造CIO在线峰会
-
精彩回顾立即查看>> 【线下论坛】华邦电子与莱迪思联合技术论坛
-
精彩回顾立即查看>> 【线下论坛】华邦电子与恩智浦联合技术论坛
-
精彩回顾立即查看>> 2024(第五届)全球数字经济产业大会暨展览会
-
精彩回顾立即查看>> 全数会2024中国人形机器人技术创新发展大会
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论