哈佛机器鱼登上Science子刊封面
但研究人员也是借用这种原理,Bluebot 用视觉来确定邻居的相对位置,并在没有任何直接交流的情况下做出含蓄的反应。不管采用哪种方法,虚拟力模型的结果都是一样的:机器鱼群倾向于分散在一个区域,排斥力和吸引力的平衡决定着它们的密度和扩散程度。
图|自组织的动态圆的形成(来源:Science Robotics)
3、动态旋转运动。鱼群最酷炫的技能,便是海洋中壮观的“鱼群风暴”了,它们经常利用这种方式来躲避捕食者的追杀,搞得捕食者晕头转向。
在这项研究中,研究人员利用了类似“铣削”结构的行为规则,该规则不依赖于对每个可见邻居的单独反应,而仅依赖于单个二进制信息源,该信息源指示至少一个其它机器人是否在视线内。
在这种情况下,机器人有一个设定,如果看不到任何其他任何邻居,则稍微向右游转,如果看到任何机器人,则稍微向左转,多圈下来,机器人自发聚集,组成了动态圆运动行为。
最后,研究人员在分散复杂性演示中,结合了多种行为以实现集体搜索操作。
在鱼类、机器人甚至人类集体中,扫描环境的工作可以在组成个体之间共享,从而可以减轻每个个体的负担,同时实现更高的集体警觉性。
未来能用于水下搜索
Blueswarm 的相关研究工作是在哈佛大学拉迪卡·纳格帕(Radhika Nagpal)实验室进行的。纳格帕目前担任哈佛大学 SEAS的Fred Kavli 计算机科学教授,以及怀斯生物启发工程研究所副教授,她领导着自组织系统研究小组,探索受生物启发的机器人技术和生物多代理系统的科研工作。
早在 2014 年,她的实验室就曾经创建过一个由 1024 个微型机器人组成的阵列 Kilobots。当时 Kilobots 的设计灵感来自于白蚁蚁群,这些数以千计的分布式机器人,内置红外发射器和接收器,允许个体与一些邻居进行通讯并测量它们的接近性,最终完成指定形态的排列组合。
图| Kilobots 机器人(来源:哈佛大学)
对于此次机器鱼的研究成果,纳格帕表示:“Blueswarm 代表了水下机器人 3D 自组织集体行为研究的重要里程碑。这项实验的相关成果将帮助我们在未来开发微型水下群体机器人,它们可以在水下进行环境监测和搜索。该研究还通过综合再现它们的行为,为更好地了解鱼群铺平了道路。”
据论文描述,在所有演示的行为中,Bluebots 仅依靠本地视觉信息,这些信息实时获取和处理,这些协调技术对不完善的知识具有鲁棒性,并且能够从看似简单的交互中,延伸出复杂而动态的全局行为。
当然,论文在总结中也提到了一些局限性,比如使用低成本的鳍式执行器的运动效果并不理想,另外,如果在浑浊的水域等视觉较差的环境下,可能需要组合其他传感器套件等。
关于这项水下机器人成果的展望,研究人员表示,也将有助于实现机器人的无监督技能进化,从而有可能结合多种机器人模式(空中、地面、水面和水下),来实现可扩展且强大的冒险活动。
未来,这些机器人可以集体出动,去搜索失事飞机的残骸,落难船只和落水人员,以及应用到诸如环境监测、在珊瑚礁和沿海水域的搜索任务等。
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论