CVPR 2020: SGAS,一种基于贪心思想的CNN/GCN网络结构搜索算法
2020-04-22 11:39
将门创投
关注
根据这三个影响边选择的三个因素,我们提出了两个选择指标:
指标1 :具有高的边重要性和高的边确定性的边将被选择,公式为:
指标2:在指标1的基础上,被选择的边也应该具有较高的稳定性:
这里,normalize(·)指 Min-Max标准化。
实验结果
我们搜索了CNN和GCN网络结构,并在CIFAR,ImageNet图像分类,ModelNet点云分类,PPI生物图数据节点分类上达到了SOTA效果。
CNN
我们将SGAS用到CNN的网络结构搜索中, CNN网络结构由普通单元(normalcell) 和 归约单元(reduction cell)组成。普通单元保持特征图大小不变,归约单元缩小特征图至. CNN任务中,搜索空间由8个运算组成:skip-connect,max-pool-3×3, avg-pool-3×3, sep-conv-3×3, sep-conv5×5, dil-conv-3×3,dil-conv-5×5, zero。
SGAS在CIFAR-10的训练集与验证集搜索结构,并在测试集上进行测试,结果如表1所示:
SGAS在CIFAR-10的训练集与验证集搜索结构,并在ImageNet测试集上进行测试,结果如表2所示:
我们的SGAS在性能超越了手工设计的网络结构以及其他NAS算法。

声明:
本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
最新活动更多
-
3月27日立即报名>> 【工程师系列】汽车电子技术在线大会
-
4月1日立即下载>> 【村田汽车】汽车E/E架构革新中,新智能座舱挑战的解决方案
-
即日-4.22立即报名>> 【在线会议】汽车腐蚀及防护的多物理场仿真
-
4月23日立即报名>> 【在线会议】研华嵌入式核心优势,以Edge AI驱动机器视觉升级
-
4月25日立即报名>> 【线下论坛】新唐科技2025新品发布会
-
在线会议观看回放>>> AI加速卡中村田的技术创新与趋势探讨
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论