CVPR 2020: SGAS,一种基于贪心思想的CNN/GCN网络结构搜索算法
GCN
我们是同时将SGAS用到GCN的网络结构搜索中的。GCN网络结构由普通单元(normal cell) 组成。其搜索空间由10个运算组成:conv-1×1, MRConv, EdgeConv, GAT, SemiGCN, GIN, SAGE, RelSAGE,skip-connect, and zero operation。
SGAS在ModelNet10的训练集与测试集搜索结构,并在ModelNet40训练集和测试集上进行训练与测试,结果如表3所示:
我们也将SGAS应用到生物信息图的结点预测上。我们在PPI (protein protein intersection) 数据集的训练集与验证集搜索结构,并在PPI的训练集和测试集上进行训练与测试,结果如表4所示:
我们SGAS在GCN上的实验,超越了之前最好的模型。我们在ModelNet40以及PPI数据集上成为了新的state-of-the-art.
参考资料[1] Barret Zoph and Quoc V Le. Neuralarchitecture search with reinforcement learning. arXiv preprintarXiv:1611.01578, 2016.[2] Esteban Real, Alok Aggarwal, YanpingHuang, and Quoc V Le. Regularized evolution for image classifier architecturesearch. In Proceedings of the AAAI Conference on Artificial Intelligence,volume 33, pages 4780–4789, 2019.[3] Hanxiao Liu, Karen Simonyan, and YimingYang. Darts: Differentiable architecture search. arXiv preprintarXiv:1806.09055, 2018.[4] Maurice G Kendall. A new measure of rank correlation. Biometrika,30(1/2):81–93, 1938.
最新活动更多
-
11月28日立即报名>>> 2024工程师系列—工业电子技术在线会议
-
12月19日立即报名>> 【线下会议】OFweek 2024(第九届)物联网产业大会
-
即日-12.26火热报名中>> OFweek2024中国智造CIO在线峰会
-
即日-2025.8.1立即下载>> 《2024智能制造产业高端化、智能化、绿色化发展蓝皮书》
-
精彩回顾立即查看>> 2024 智能家居出海论坛
-
精彩回顾立即查看>> 【在线会议】多物理场仿真助跑新能源汽车
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论