detectron2系列:config软件包
# Solver
# ---------------------------------------------------------------------------- #
_C.SOLVER = CN()
# See detectron2/solver/build.py for LR scheduler options
_C.SOLVER.LR_SCHEDULER_NAME = "WarmupMultiStepLR"
_C.SOLVER.MAX_ITER = 40000
_C.SOLVER.BASE_LR = 0.001
_C.SOLVER.MOMENTUM = 0.9
_C.SOLVER.WEIGHT_DECAY = 0.0001
# The weight decay that's applied to parameters of normalization layers
# (typically the affine transformation)
_C.SOLVER.WEIGHT_DECAY_NORM = 0.0
_C.SOLVER.GAMMA = 0.1
# The iteration number to decrease learning rate by GAMMA.
_C.SOLVER.STEPS = (30000,)
_C.SOLVER.WARMUP_FACTOR = 1.0 / 1000
_C.SOLVER.WARMUP_ITERS = 1000
_C.SOLVER.WARMUP_METHOD = "linear"
# Save a checkpoint after every this number of iterations
_C.SOLVER.CHECKPOINT_PERIOD = 5000
# Number of images per batch across all machines.
# If we have 16 GPUs and IMS_PER_BATCH = 32,
# each GPU will see 2 images per batch.
_C.SOLVER.IMS_PER_BATCH = 16
# Detectron v1 (and previous detection code) used a 2x higher LR and 0 WD for
# biases. This is not useful (at least for recent models). You should avoid
# changing these and they exist only to reproduce Detectron v1 training if
# desired.
_C.SOLVER.BIAS_LR_FACTOR = 1.0
_C.SOLVER.WEIGHT_DECAY_BIAS = _C.SOLVER.WEIGHT_DECAY
# ---------------------------------------------------------------------------- #
# Specific test options
# ---------------------------------------------------------------------------- #
_C.TEST = CN()
# For end-to-end tests to verify the expected accuracy.
# Each item is [task, metric, value, tolerance]
# e.g.: [['bbox', 'AP', 38.5, 0.2]]
_C.TEST.EXPECTED_RESULTS = []
# The period (in terms of steps) to evaluate the model during training.
# Set to 0 to disable.
_C.TEST.EVAL_PERIOD = 0
# The sigmas used to calculate keypoint OKS.
# When empty it will use the defaults in COCO.
# Otherwise it should have the same length as ROI_KEYPOINT_HEAD.NUM_KEYPOINTS.
_C.TEST.KEYPOINT_OKS_SIGMAS = []
# Maximum number of detections to return per image during inference (100 is
# based on the limit established for the COCO dataset).
_C.TEST.DETECTIONS_PER_IMAGE = 100
_C.TEST.AUG = CN({"ENABLED": False})
_C.TEST.AUG.MIN_SIZES = (400, 500, 600, 700, 800, 900, 1000, 1100, 1200)
_C.TEST.AUG.MAX_SIZE = 4000
_C.TEST.AUG.FLIP = True
_C.TEST.PRECISE_BN = CN({"ENABLED": False})
_C.TEST.PRECISE_BN.NUM_ITER = 200
# ---------------------------------------------------------------------------- #
# Misc options
# ---------------------------------------------------------------------------- #
# Directory where output files are written
_C.OUTPUT_DIR = "./output"
# Set seed to negative to fully randomize everything.
# Set seed to positive to use a fixed seed. Note that a fixed seed does not
# guarantee fully deterministic behavior.
_C.SEED = -1
# Benchmark different cudnn algorithms.
# If input images have very different sizes, this option will have large overhead
# for about 10k iterations. It usually hurts total time, but can benefit for certain models.
# If input images have the same or similar sizes, benchmark is often helpful.
_C.CUDNN_BENCHMARK = False
# The period (in terms of steps) for minibatch visualization at train time.
# Set to 0 to disable.
_C.VIS_PERIOD = 0
# global config is for quick hack purposes.
# You can set them in command line or config files,
# and access it with:
#
# from detectron2.config import global_cfg
# print(global_cfg.HACK)
#
# Do not commit any configs into it.
_C.GLOBAL = CN()
_C.GLOBAL.HACK = 1.0
最新活动更多
-
即日-1.24立即参与>>> 【限时免费】安森美:Treo 平台带来出色的精密模拟
-
2月28日火热报名中>> 【免费试用】东集技术年终福利——免费试用活动
-
即日-3.21立即报名 >> 【深圳 IEAE】2025 消费新场景创新与实践论坛
-
4日10日立即报名>> OFweek 2025(第十四届)中国机器人产业大会
-
7.30-8.1火热报名中>> 全数会2025(第六届)机器人及智能工厂展
-
即日-2025.8.1立即下载>> 《2024智能制造产业高端化、智能化、绿色化发展蓝皮书》
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论